1. Abate, T.G., Nielsen, R. and Tveterås, R., 2016. Cost-effectiveness analysis of live feed used in larval rearing of turbot. Aquaculture Nutrition, 22, pp. 425-434.
https://doi.org/10.1111/anu.12307 [
DOI:10.1111/anu.12307.]
2. Asmild, M., Hukom, V., Nielsen, R. and Nielsen, M., 2024. 'Is economies of scale driving the development in shrimp farming from Penaeus monodon to Litopenaeus vannamei? The case of Indonesia', Aquaculture, 579, p. 740178.
https://doi.org/10.1016/j.aquaculture.2023.740178 [
DOI:10.1016/j.aquaculture.2023.740178.]
3. Bahrehmand Namaghi, B., Hedayati, M., Fakhari, S. and Heydari, R., 2021. Green-vortex-assisted DLLME coupled to HPLC for taurine in energy drinks. Analytical Methods, 13, pp. 200-209. [
DOI:10.1039/D0AY01972D.]
4. Chen, H.Y. and Chen, C., 2025. Importance of Using Modern Regression Analysis for Response Surface Models in Science and Technology. Applied Sciences, 15(13), p. 7206.
https://doi.org/10.3390/app15137206 [
DOI:10.3390/app15137206.]
5. Chen, R. and Chen, J., 2025. Response surface methodology in aquaculture nutrition: An overview. Aquaculture Journal, 3(2), p. 14. [
DOI:10.3390/aquacj3020014.]
6. Cho, J.H., Kim, J.H., Park, J.W. and Baek, H.J., 2022. 'A preliminary study on the effects of taurine-enriched rotifers on the growth and survival of the small yellow croaker Larimichthys polyactis larvae', Animals, 12(11), p. 1403.
https://doi.org/10.3390/ani12111403 [
DOI:10.3390/ani12111403.]
7. Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., and Mozafari, M. R., 2018. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 10(2), p. 57.
https://doi.org/10.3390/pharmaceutics10020057 [
DOI:10.3390/pharmaceutics10020057.]
8. Garlock, T. M., Asche, F., Anderson, J. L., Eggert, H., Anderson, T. M., Che, B., Chávez, C. A., Chu, J., Chukwuone, N., Dey, M. M., Fitzsimmons, K., Flores, J., Guillen, J., Kumar, G., Liu, L., Llorente, I., Nguyen, L., Nielsen, R., Pincinato, R. B. M., … Tveteras, R., 2024. Environmental, economic, and social sustainability in aquaculture: the aquaculture performance indicators. Nature Communications, 15(1). [
DOI:10.1038/s41467-024-49556-8]
9. Hansen, B.W. and Møller, S., 2021. 'A bibliometric survey of live feed for marine finfish larvae production', Aquaculture Research, 52(11), pp. 5124-5135.
https://doi.org/10.1111/are.15460 [
DOI:10.1111/are.15460.]
10. Hawkyard, M. and Koch, J.F., 2016. The use of liposomes to enrich rotifers and Artemia with amino acids (taurine, leucine). Aquaculture Nutrition, 22, pp. 1130-1140.
https://doi.org/10.1111/anu.12317 [
DOI:10.1111/anu.12317.]
11. Hawkyard, M., Laurel, B., Barr, Y., Hamre, K. and Langdon, C., 2015. Evaluation of liposomes for the enrichment of rotifers (Brachionus sp.) with taurine and their subsequent effects on larval northern rock sole. Aquaculture, 441, pp. 118-125.
https://doi.org/10.1016/j.aquaculture.2015.02.012 [
DOI:10.1016/j.aquaculture.2015.02.012.]
12. Hawkyard, M., Stuart, K., Langdon, C. and Drawbridge, M., 2016. The enrichment of rotifers (Brachionus plicatilis) and Artemia franciscana with taurine liposomes and effects on California yellowtail larvae. Aquaculture Nutrition, 22, pp. 273-285.
https://doi.org/10.1111/anu.12317 [
DOI:10.1111/anu.12317.]
13. Hawkyard, M.M., Lynam, M.M., Varga, Z.M. and Langdon, C.J., 2025. 'Use of liposome-enriched rotifers to estimate the optimal taurine concentration for feeding larval Seriola dorsalis', Aquaculture International.
https://doi.org/10.1007/s10499-025-02112-7 [
DOI:10.1007/s10499-025-02112-7.]
14. Hewavitharana, A.K., 2020. A review of extraction of fats from food and FAMEs preparation for GC-MS. Arabian Journal of Chemistry, 13(8), pp. 6865-6875.
https://doi.org/10.1016/j.arabjc.2020.06.039 [
DOI:10.1016/j.arabjc.2020.06.039.]
15. Huang, H., Zeng, C. and Southgate, P.C., 2022. Live feeds in aquaculture: recent advances and future prospects. Frontiers in Marine Science, 9, p. 864165.
https://doi.org/10.3389/fmars.2022.864165 [
DOI:10.3389/fmars.2022.864165.]
16. Lakens, D., 2013. Calculating and reporting effect sizes to facilitate cumulative science. Frontiers in Psychology, 4, 863.
https://doi.org/10.3389/fpsyg.2013.00863 [
DOI:10.3389/fpsyg.2013.00863.]
17. Large, D.E., Abdelmessih, R.G., Fink, E.A. and Auguste, D.T., 2021. 'Liposome composition in drug delivery: design, synthesis, characterization, and clinical application', Advanced Drug Delivery Reviews, 176, p. 113851.
https://doi.org/10.1016/j.addr.2021.113851 [
DOI:10.1016/j.addr.2021.113851.]
18. Lin, Y.C. and Chen, J.C., 2001. Acute toxicity of ammonia on Litopenaeus vannamei juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 259(1), pp. 109-119.
https://doi.org/10.1016/S0022-0981(01)00227-1 [
DOI:10.1016/S0022-0981(01)00227-1.]
19. Liu, P., Chen, G. and Zhang, J., 2022. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules, 27, p. 1372.
https://doi.org/10.3390/molecules27041372 [
DOI:10.3390/molecules27041372.]
20. Lombardo, D. and Kiselev, M.A., 2022. Methods of Liposomes Preparation: Formation and Control of Size and Structure. Pharmaceutics, 14(3), p. 543.
https://doi.org/10.3390/pharmaceutics14030543 [
DOI:10.3390/pharmaceutics14030543.]
21. Monroig, Ó., Navarro, J.C., Amat, F. and Hontoria, F., 2007. Enrichment of Artemia nauplii in vitamin A, vitamin C and methionine using liposomes. Aquaculture, 269, pp. 504-513.
https://doi.org/10.1016/j.aquaculture.2007.02.056 [
DOI:10.1016/j.aquaculture.2007.02.056.]
22. Özkızılcık, S. and Chu, F.L.E., 1994. Uptake and metabolism of liposomes by Artemia nauplii. Aquaculture, 119(2-3), pp. 141-153.
https://doi.org/10.1016/0044-8486(94)90108-2 [
DOI:10.1016/0044-8486(94)90108-2.]
23. Pattni, B.S., Chupin, V.V. and Torchilin, V.P., 2015. 'New developments in liposomal drug delivery', Chemical Reviews, 115(19), pp. 10938-10966.
https://doi.org/10.1021/acs.chemrev.5b00046 [
DOI:10.1021/acs.chemrev.5b00046.]
24. Randall, E.L., 2011. Soxhlet extraction: past and present. Analytical Methods, 3, pp. 1523-1531.
https://doi.org/10.1039/c0ay00569j [
DOI:10.1039/C0AY00569J.]
25. Riccardi, D., Baldino, L., and Reverchon, E., 2024. Liposomes, transfersomes and niosomes: production methods and their applications in the vaccinal field. Journal of Translational Medicine, 22(1). [
DOI:10.1186/s12967-024-05160-4]
26. Sáez-Plaza, P., Navas, M.J., Wybraniec, S., Michałowski, T. and Asuero, A.G., 2013. An overview of the Kjeldahl method of nitrogen determination. Talanta, 112, pp. 85-102.
https://doi.org/10.1016/j.talanta.2013.03.046 [
DOI:10.1016/j.talanta.2013.03.046.]
27. Salze, G.P. and Davis, D.A., 2015. Taurine: a critical nutrient for future fish feeds. Aquaculture, 437,pp . 215-229.
https://doi.org/10.1016/j.aquaculture.2014.12.006 [
DOI:10.1016/j.aquaculture.2014.12.006.]
28. Santini, A., Novellino, E. and Armini, V., 2022. Analytical determination of taurine in food and biological matrices: an overview. Foods, 11(5), p. 682.
https://doi.org/10.3390/foods11050682 [
DOI:10.3390/foods11050682.]
29. Sha, H.N., Lu, Y.M., Zhan, P.P., Chen, J., Qiu, Q.-F. and Xiong, J.B., 2025. 'Beneficial effects of probiotics on Litopenaeus vannamei growth and immune function via the recruitment of gut Rhodobacteraceae symbionts', Zoological Research, 46(2), pp. 388-400.
https://doi.org/10.24272/j.issn.2095-8137.2024.364 [
DOI:10.24272/j.issn.2095-8137.2024.364.]
30. Shen, G., Wang, S., Dong, J., Feng, J., Xu, J., Xia, F., Wang, X., and Ye, J., 2019. Metabolic Effect of Dietary Taurine Supplementation on Grouper (Epinephelus coioides): A 1H-NMR-Based Metabolomics Study. Molecules, 24(12), p. 2253. [
DOI:10.3390/molecules24122253]
31. Shi, M., Yao, X., Qu, K., Liu, Y., Tan, B., and Xie, S., 2023. Effects of taurine supplementation in low fishmeal diet on growth, immunity and intestinal health of Litopenaeus vannamei. Aquaculture Reports, 32, p. 101713. [
DOI:10.1016/j.aqrep.2023.101713]
32. To, V.A. and Liou, C.H., 2021. Taurine supplementation enhances the replacement level of fishmeal by soybean concentrate in diets of juvenile Pacific white shrimp. Aquaculture Research, 52(8), pp. 3771-3784.
https://doi.org/10.1111/are.15222 [
DOI:10.1111/are.15222.]
33. Valencia-Castañeda, G., Frías-Espericueta, M.G., Vanegas-Pérez, R.C., Chávez-Sánchez, M.C. and Páez-Osuna, F., 2018. Acute toxicity of ammonia, nitrite and nitrate to Litopenaeus vannamei postlarvae in low-salinity water. Environmental Toxicology and Pharmacology, 60, 212-219.
https://doi.org/10.1016/j.etap.2018.05.002 [
DOI:10.1016/j.etap.2018.05.002.]
34. Van Stappen, G., Sorgeloos, P. and Rombaut, G. (eds.), 2024. Manual on Artemia production and use. FAO Fisheries and Aquaculture Technical Paper No. 702. Rome: FAO. [
DOI:10.4060/cd0313en]
35. Villarreal, H., 2023. Shrimp farming advances, challenges, and opportunities. Journal of the World Aquaculture Society, 54(5), pp. 1092-1095. Portico. [
DOI:10.1111/jwas.13027]
36. Wang, H., Du, X., Zou, J., Wang, M., Lei, Y., Zhang, B., Zhao, Y., Jiang, L., Chen, X., and Wang, Q., 2025. Taurine Supplementation Enhances the Resistance of Litopenaeus vannamei Postlarvae to Low-Salinity Stress. Biology, 14(8), p. 1082. [
DOI:10.3390/biology14081082]
37. Wang, Y., Wang, K., Huang, L., Dong, P., Wang, S., Chen, H., Lu, Z., Hou, D., and Zhang, D., 2020. Fine-scale succession patterns and assembly mechanisms of bacterial community of Litopenaeus vannamei larvae across the developmental cycle. Microbiome, 8(1). [
DOI:10.1186/s40168-020-00879-w]
38. Watson, A.M., Barrows, F.T. and Place, A.R., 2015. 'Leaching of taurine from commercial-type aquaculture feeds', Aquaculture Research, 46(6), pp. 1510-1517.
https://doi.org/10.1111/are.12309 [
DOI:10.1111/are.12309.]