1. Akhil, S., Saeed, A.M.M.J., Majety, S.S., Mullamuri, B., Majji, G., Bharatiya, D., Mosali, V.S.S., Bollikolla, H.B. and Chandu, B., 2021. Cost effective biosynthetic approach for graphene exhibiting superior sonochemical dye removal capacity. Carbon Letters, 31(6), pp.1215-1225.
https://doi.org/10.1007/s42823-021-00245-2 [
DOI:10.1007/s42823-021-00245-2.]
2. Ansari, M. Z., Lone, M. N., Sajid, S. and SIddIqUI, W. A., 2018. Novel green synthesis of graphene layers using zante currants and graphene oxide. Oriental Journal of Chemistry, 34 (6), 2832-2837.
https://doi.org/10.13005/ojc/340621 [
DOI:10.13005/ojc/340621.]
3. Azizi, M. and Kalantar, M., 2020. Evaluation of microstructural and antibacterial properties of graphene oxide synthesized by green method. Journal of Advanced Materials and Technologies (JAMT), 9 (3), pp. 51-61. [
DOI:10.30501/jamt.2020.221997.1075. (In Persian).]
4. Bakshi, M., Ghosh, S. and Chaudhuri, P., 2015. Green synthesis, characterization and antimicrobial potential of sliver nanoparticles using three mangrove plants from Indian Sundarban. BioNanoScience, 5 (3), pp.162-170. [
DOI:10.1007/s12668-015-0175-8]
5. Bao, Y., Tian, C., Yu, H., He, J., Song, K., Guo, J., Zhou, X., Zhuo, O. and Liu, S., 2022. In situ green synthesis of graphene oxide-silver nanoparticles composite with using gallic acid. Frontiers in Chemistry, 10, p.905781. [
DOI:10.3389/fchem.2022.905781]
6. Chaudhuri, P., Nath, B. and Birch, G., 2014. Accumulation of trace metals in grey mangrove Avicennia marina fine nutritive roots: the role of rhizosphere processes. Marine pollution bulletin, 79 (1-2), pp. 284-292.
https://doi.org/10.1016/j.marpolbul.2013.11.024 [
DOI:10.1016/j.marpolbul.2013.11.024.]
7. Fan, Z. J., Kai, W., Yan, J., Wei, T., Zhi, L. J., Feng, J., Ren, Y.M., Song, L.P. and Wei, F., 2011. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS nano, 5 (1), 191-198.
https://doi.org/10.1021/nn102339t [
DOI:10.1021/nn102339t.]
8. George, J.S., Paduvilan, J.K., Velayudhan, P., Kalarikkal, N., Hameed, N. and Thomas, S., 2022. Cashew apple extract: A novel, potential green reducing agent for the synthesis of reduced graphene oxide. Journal of Nano Research, 71, pp.57-70.
https://doi.org/10.4028/www.scientific.net/JNanoR.71.57 [
DOI:10.4028/www.scientific.net/JNanoR.71.57.]
9. Gkika, D.A., Maroulas, K.N. and Kyzas, G.Z., 2025. Various reduced graphene oxide green synthetic routes: comparing the cost procedures. ACS omega, 10 (32), pp.36221-36237. [
DOI:10.1021/acsomega.5c04090]
10. Gnanadesigan, M., Anand, M., Ravikumar, S., Maruthupandy, M., Ali, M.S., Vijayakumar, V. and Kumaraguru, A.K., 2012. Antibacterial potential of biosynthesised silver nanoparticles using Avicennia marina mangrove plant. Applied Nanoscience, 2 (2), pp.143-147.
https://doi.org/10.1007/s13204-011-0048-6 [
DOI:10.1007/s13204-011-0048-6.]
11. Goyat, R., Saharan, Y., Singh, J., Umar, A. and Akbar, S., 2022. Synthesis of graphene-based nanocomposites for environmental remediation applications: a review. Molecules, 27 (19), p. 6433. https://doi: 10.3390/molecules27196433. [
DOI:10.3390/molecules27196433]
12. Hou, D., Liu, Q., Cheng, H., Zhang, H. and Wang, S., 2017. Green reduction of graphene oxide via Lycium barbarum extract. Journal of Solid-State Chemistry, 246, 351-356.
https://doi.org/10.1016/j.jssc.2016.12.008 [
DOI:10.1016/j.jssc.2016.12.008.]
13. Ibrahim, H.A., Abdel-Latif, H.H. and Zaghloul, E.H., 2022. Phytochemical composition of Avicennia marina leaf extract, its antioxidant, antimicrobial potentials and inhibitory properties on Pseudomonas fluorescens biofilm. Egyptian Journal of Aquatic Research, 48 (1), pp. 29-35.
https://doi.org/10.1016/j.ejar.2021.10.007 [
DOI:10.1016/j.ejar.2021.10.007.]
14. Jahangirzadeh, F., 2016. Biosynthesis of graphene nanosheets using Rosa cannina plant, investigation of its properties and application in modern drug delivery systems - University of Tabriz. (In persian).
15. Kataria, S.K., Kadyan, P., Saini, J., Saharan, M. and Arasu, P.T., 2025. Green synthesis of red fluorescent graphene quantum dots using Withania somnifera leaves: exploring antidiabetic and antioxidant potential. International Journal of Biomaterials, 2025 (1), p.5841012.
https://doi.org/10.1155/ijbm/5841012 [
DOI:10.1155/ijbm/5841012.]
16. Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud'Homme, R. K., Aksay, I. A. and Car, R., 2008. Raman spectra of graphite oxide and functionalized graphene sheets. Nano letters, 8 (1), 36-41.
https://doi.org/10.1021/nl071822y [
DOI:10.1021/nl071822y.]
17. Mahmoud, A.E.D., 2020. Eco-friendly reduction of graphene oxide via agricultural byproducts or aquatic macrophytes. Materials Chemistry and Physics, 253, p.123336.
https://doi.org/10.1016/j.matchemphys.2020.123336 [
DOI:10.1016/j.matchemphys.2020.123336.]
18. Mao, H.Y., Lu, Y.H., Lin, J.D., Zhong, S., Wee, A.T.S. and Chen, W., 2013. Manipulating the electronic and chemical properties of graphene via molecular functionalization. Progress in Surface Science, 88 (2), pp.132-159.
https://doi.org/10.1016/j.progsurf.2013.02.001 [
DOI:10.1016/j.progsurf.2013.02.001.]
19. Meka Chufa, B., Abdisa Gonfa, B., Yohannes Anshebo, T. and Adam Workneh, G., 2021. A novel and simplest green synthesis method of reduced graphene oxide using methanol extracted Vernonia amygdalina: large‐scale production. Advances in Condensed Matter Physics, 2021(1), p.6681710.
https://doi.org/10.1155/2021/6681710 [
DOI:10.1155/2021/6681710.]
20. Mhamane, D., Ramadan, W., Fawzy, M., Rana, A., Dubey, M., Rode, C., Lefez, B., Hannoyer, B. and Ogale, S., 2011. From graphite oxide to highly water dispersible functionalized graphene by single step plant extract-induced deoxygenation. Green Chemistry, 13 (8), pp.1990-1996.
https://doi.org/10.1039/c1gc15393e [
DOI:10.1039/C1GC15393E]
21. Mitra, S., Naskar, N., Lahiri, S. and Chaudhuri, P., 2023. A study on phytochemical profiling of Avicennia marina mangrove leaves collected from Indian Sundarbans. Sustainable Chemistry for the Environment, 4, p.100041.
https://doi.org/10.1016/j.scenv.2023.100041 [
DOI:10.1016/j.scenv.2023.100041.]
22. Nawaz, M.H., Iqbal, N., Rehman, R. and Shahid, M.K., 2023. Green synthesis and characterization of reduced graphene oxide. Issues of Chemistry and Chemical Technology/Voprosy Khimii & Khimicheskoi Tekhnologii, 4, p. 69-76.
https://doi.org/10.32434/0321-4095-2023-149-4-69-76 [
DOI:10.32434/0321-4095-2023-149-4-69-76.]
23. Perreault, F., De Faria, A.F. and Elimelech, M., 2015. Environmental applications of graphene-based nanomaterials. Chemical Society Reviews, 44 (16), pp.5861-5896. [
DOI:10.1039/C5CS00021A]
24. Perumal, D., Albert, E.L. and Abdullah, C.A.C., 2022. Green reduction of graphene oxide involving extracts of plants from different taxonomy groups. Journal of Composites Science, 6 (2), p.58.
https://doi.org/10.3390/jcs6020058 [
DOI:10.3390/jcs6020058.]
25. Ramakrishnan, S., Dhakshnamoorthy, M., Jelmy, E.J., Vasanthakumari, R. and Kothurkar, N.K., 2014. Synthesis and characterization of graphene oxide-polyimide nanofiber composites. RSC Advances, 4 (19), pp. 9743-9749.
https://doi.org/10.1039/c3ra46004e [
DOI:10.1039/C3RA46004E.]
26. Safiari, S., 2018. Mangrove forests in Iran. Irannature, 2 (2), pp. 49-57. [
DOI:10.22092/ IRAN. 2017. 111425. (In Persian).]
27. Shaheen, S., Saeed, Z., Ahmad, A., Pervaiz, M., Younas, U., Khan, R.R.M., Luque, R. and Rajendran, S., 2023. Green synthesis of graphene-based metal nanocomposite for electro and photocatalytic activity; recent advancement and future prospective. Chemosphere, 311, p.136982. [
DOI:10.1016/j.chemosphere.2022.136982]
28. Singh, C., Ali, M. A. and Sumana, G., 2016. Green synthesis of graphene-based biomaterial using fenugreek seeds for lipid detection. ACS Sustainable Chemistry and Engineering, 4 (3), 871-880.
https://doi.org/10.1021/acssuschemeng.5b00923 [
DOI:10.1021/acssuschemeng.5b00923.]
29. Thakur, S. and Karak, N., 2015. Alternative methods and nature-based reagents for the reduction of graphene oxide: A review. Carbon, 94, 224-242.
https://doi.org/10.1016/j.carbon.2015.06.030 [
DOI:10.1016/j.carbon.2015.06.030.]
30. Torrisi, F., Hasan, T., Wu, W., Sun, Z., Lombardo, A., Kulmala, T.S., Hsieh, G.W., Jung, S., Bonaccorso, F., Paul, P.J. and Chu, D., 2012. Inkjet-printed graphene electronics. ACS nano, 6 (4), pp. 2992-3006.
https://doi.org/10.1021/nn2044609 [
DOI:10.1021/nn2044609.]
31. Upadhyay, R.K., Soin, N., Bhattacharya, G., Saha, S., Barman, A. and Roy, S.S., 2015. Grape extract assisted green synthesis of reduced graphene oxide for water treatment application. Materials Letters, 160, pp.355-358.
https://doi.org/10.1016/j.matlet.2015.07.144 [
DOI:10.1016/j.matlet.2015.07.144.]
32. Zaaba, N.I., Foo, K.L., Hashim, U., Tan, S.J., Liu, W.W. and Voon, C.H., 2017. Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia engineering, 184, pp.469-477.
https://doi.org/10.1016/j.proeng.2017.04.118 [
DOI:10.1016/j.proeng.2017.04.118.]
33. Zaghloul, E.H. and El Halfawy, N.M., 2025. Bioactive compounds and biological activities of Avicennia marina (Forssk.) Vierh. In Bioactive Compounds in Mangroves and their Associates, Cham: Springer Nature Switzerland, pp. 1-12.
https://doi.org/10.1007/978-3-031-63920-3_6-1 [
DOI:10.1007/978-3-031-63920-3_6-1.]
34. Zainuddin, M.F., Nik Raikhan, N.H., Othman, N.H. and Abdullah, W.F.H., 2018, May. Synthesis of reduced Graphene Oxide (rGO) using different treatments of Graphene Oxide (GO). In IOP conference series: materials science and engineering, 358 (1), p. 012046.
https://doi.org/10.1088/1757-899X/358/1/012046 [
DOI:10.1088/1757-899X/358/1/012046.]