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This study investigates the effect of weighting predictors on the performance of 

habitat suitability index (HSI) models using arithmetic mean (AMM) and 

geometric mean (GMM) methods. The case study focused on the catch data of 

Caspian Kutum (Rutilus frisii), with habitat parameters including day-time sea 

surface temperature, near-surface chlorophyll-a concentration, particulate 

organic carbon concentration, distance from fishing points to the river mouth, 

and bottom slope. Relative weights of environmental variables and suitability 

index (SI) fitting were determined using the support vector machine (SVM) 

technique. Sea surface temperature and particulate organic carbon concentration 

were identified as the most influential variables, with weights of 0.315 and 

0.231, respectively, in explaining fish catch variance. Model performance 

evaluation revealed that the HSIWGMM model outperformed others, showing 

the lowest RMSE (training: 0.1818, testing: 0.2540) and the highest correlation 

coefficient (training: 0.4693, testing: 0.1953). In contrast, the HSIWAMM 

model showed the weakest performance (training: RMSE = 0.4023, r = 0.3843; 

testing: RMSE = 0.3858, r = 0.1360). 
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EXTENDED ABSTRACT 

 

Introduction 

Habitat suitability index (HSI) models are widely used by ecologists to quantify the relationship 

between fish distribution and habitat quality conditions. These models are constructed using a 

set of suitability indices (SIs) that are functions of one or more environmental predictors, which 

describe the suitability of habitat conditions for a target species. The weighting of habitat 

predictors plays a significant role in HSI model performance. Previous research has shown that 

the use of different weight estimates for model predictors can lead to substantial differences in 

model predictions. Therefore, applying an efficient weighting approach is crucial for 

developing reliable HSI models that accurately estimate fish habitat preferences and 

distributions. The objective of this study was to investigate the effect of weighting habitat 

predictors on the predictive performance of HSI models for Caspian Kutum (Rutilus frisii) as a 

case study. 

Materials and Methods 

Catch data for Caspian Kutum from the southern waters of the Caspian Sea during the 

2002/03 to 2011/12 fishing seasons were used as a fish abundance index, converted to catch-

per-unit-of-effort (CPUE) to serve as the response variable in the models. The environmental 

(habitat) variables included day-time sea surface temperature (SST, °C), near-surface 

chlorophyll-a concentration (CHL, mg m³), particulate organic carbon concentration (POC, mg 

m³), distance from fishing points to the river mouth (Distance, km), and bottom slope (Slope, 

°), which were obtained from the MODIS and GEBCO datasets. Eighty percent of the data were 

used for model training, while the remaining data were reserved for testing the models. 

The support vector machine (SVM) technique was employed to calculate the relative 

importance of the environmental predictors and to fit the suitability index (SI) curves in R 

software (version 4.1.2) using the “e1071”, “mixOmix”, “randomForest”, and “pdp” packages. 

The SI values for each predictor were calculated using normalized CPUE values (equation 1): 

 

𝑆𝐼̂𝑖 =
𝐶𝑃𝑈𝐸̂𝑖 − 𝐶𝑃𝑈𝐸̂𝑚𝑖𝑛

𝐶𝑃𝑈𝐸̂𝑚𝑎𝑥 − 𝐶𝑃𝑈𝐸̂𝑚𝑖𝑛

                             (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1) 

 

Where 𝑆𝐼̂𝑖 represents the estimated SI for the ith variable, 𝐶𝑃𝑈𝐸̂𝑖 is the mean estimated CPUE 

for the ith value of the predictor, and 𝐶𝑃𝑈𝐸̂𝑚𝑎𝑥 and 𝐶𝑃𝑈𝐸̂𝑚𝑖𝑛are the maximum and minimum 

estimated CPUE for the predictor, respectively. Final HSI scores were calculated using the 

arithmetic mean model (AMM) (equation 2), weighted arithmetic mean model (WAMM) 

(equation 3), geometric mean model (GMM) (equation 4), and weighted geometric mean model 

(WGMM) (equation 5) methods as follows: 

 

𝐻𝑆𝐼̂
𝑖 =

1

𝑛
∑ 𝑆𝐼̂𝑖

𝑛

𝑖=1

                               (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2) 

𝐻𝑆𝐼̂
𝑖 = ∑ 𝑊̂𝑖𝑆𝐼̂𝑖

𝑛

𝑖=1

                              (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3) 
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𝐻𝑆𝐼̂
𝑖 = √∏ 𝑆𝐼̂𝑖

𝑛

𝑖=1

𝑛

                              (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4) 

𝐻𝑆𝐼̂
𝑖 = ∏ 𝑆𝐼̂𝑖

𝑊̂𝑖

𝑛

𝑖=1

(𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5) 

 

where 𝑆𝐼̂𝑖 is the SI value for the ith predictor, 𝑊̂𝑖 is the partial weight of the ith predictor, and 

n is the number of total predictors. A standardized form of the real CPUEs (stCPUE) (equation 

6) was used as the fish abundance index at the range of [0, 1]: 

 

𝑠𝑡𝐶𝑃𝑈𝐸𝑖𝑗 =  
𝐶𝑃𝑈𝐸𝑖𝑗 − 𝐶𝑃𝑈𝐸𝑚𝑖𝑛

𝐶𝑃𝑈𝐸𝑚𝑎𝑥 − 𝐶𝑃𝑈𝐸𝑚𝑖𝑛
                  (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6) 

 

The prediction error of HSI models was assessed using root mean squared error (RMSE) scores 

(equation 7): 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑖 − 𝑥̂𝑖)2𝑛

𝑖=1

𝑁
                        (𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7) 

 

where 𝑥𝑖 and 𝑥̂𝑖 are the stCPUE and predicted HSI scores, respectively. The Pearson correlation 

coefficient (r) between stCPUE and HSI values was used as another measure of model 

performance. Also, the proportions of fishing point suitability in stCPUE and HSI classes of 

[0.0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), and [0.8, 1.0] were calculated to compare the final 

model prediction accuracy. 

Results 

The fitted SVM models revealed the following weights for the environmental predictors: SST 

= 0.315, POC = 0.231, Slope = 0.186, CHL = 0.142, and Distance = 0.126. The suitability index 

(SI) curves for most predictors exhibited bell-shaped distributions, with the highest SI values 

at the following ranges: 13-17 mg m³ for CHL, 24-25°C for SST, 4200-5100 mg m³ for POC, 

0.25-0.33° for Slope, and 0-10 km for Distance. Among the HSI models, the HSIWGMM model 

demonstrated the best performance, with the lowest RMSE values for both training (RMSE = 

0.1818) and test (RMSE = 0.2540) datasets. It also exhibited the highest correlation coefficients 

for the training (r = 0.4693) and test (r = 0.1953) datasets. In contrast, the HSIWAMM model 

showed the weakest performance, with training RMSE = 0.4023 and r = 0.3843, and testing 

RMSE = 0.3858 and r = 0.1360. Among the unweighted models, HSIGMM outperformed 

HSIAMM, with lower RMSE and higher r values. Comparing the proportions of fishing points 

in habitat suitability classes for the 2010/11 and 2011/12 catch seasons revealed that the 

HSIWGMM model showed a higher overlap with the stCPUE data compared to other HSI 

models, while HSIAMM and HSIWAMM showed the lowest overlaps.  

Conclusion 
The findings of this study demonstrate that the HSIGMM model, without weighting predictors, 

outperformed the HSIAMM model. Incorporating predictor importance scores obtained from 

the SVM models as weights in the development of HSI models significantly improved the 
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predictive accuracy of the HSIWGMM model, which showed a high overlap between its 

suitability class distribution and stCPUE values. Conversely, applying weighted predictors to 

the AMM model resulted in reduced predictive performance for the HSIWAMM model. 
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( HSIهای شاخص مطلوبیت زیستگاه )بین بر عملکرد مدلدهی متغیرهای پیشتأثیر وزن

 (Rutilus frisii)مطالعه موردی: ماهی سفید دریای خزر، 

 1سهیل ایگدری | 1فاتح معزی

 . گروه شیلات، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران1
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 :نویسنده مسئول 

soheil.eagderi@ut.ac.ir 

  ها:واژهکلید
شاخص مطلوبیت زیستگاه 

(HSI،) 
 ماشین بردار پشتیبان،

 ماهی سفید،
 مدلسازی،

 .دهیوزن

 

 
های شاخص مطلوبیت زیستگاه بینی مدلبین بر عملکرد پیشدهی متغیرهای پیشدر مطالعه حاضر، تأثیر وزن

(HSI مبتنی )( بر دو روش مدل میانگین حسابیAMM( و مدل میانگین هندسی )GMM .مورد بررسی قرار گرفت )

عنوان مورد مطالعاتی مورد استفاده قرار گرفت و متغیرهای ( بهRutilus frisiiهای صید ماهی سفید دریای خزر )داده

در لایه سطحی آب، غلظت  a-کلروفیل زیستگاهی مورد استفاده عبارت بودند از: دمای سطح آب دریا در روز، غلظت

ای، فاصله نقاط صیدگاهی از دهانه رودخانه و شیب بستر. محاسبه وزن نسبی پارامترهای محیطی و کربن آلی ذره

( انجام گرفت. دمای SVM( با استفاده از تکنیک ماشین بردار پشتیبان )SIهای شاخص مطلوبیت )برازش مدل

، بیشترین مقادیر وزن را در 231/0و  315/0ترتیب با داشتن مقادیر ای بهذره سطحی آب دریا و غلظت کربن آلی

های برازش یافته در مراحل آموزش و بینی مدلخود اختصاص دادند. ارزیابی پیشتوضیح واریانس صید ماهی به

( 2540/0ون: ؛ آزم1818/0)آموزش:  RMSEبا داشتن کمترین مقادیر  WGMMHSIها نشان داد که مدل آزمون مدل

( بهترین عملکرد را به خود اختصاص داده و 1953/0؛ آزمون: 4693/0و بالاترین ضریب همبستگی )آموزش: 

=  3858/0؛ آزمون: r=  3843/0؛ RMSE=  4023/0)آموزش:  WAMMHSIترین عملکرد نیز با مدل ضعیف

RMSE 1360/0؛  =rدست آمد.( به 
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 مقدمه
های جغرافیایی مربوط به حضور و زمانی گستره-ریزی و مدیریت حفاظتی ذخائر ماهیان مبتنی بر شناخت و تشخیص مکانیبرنامه

طور معمول در سازی زیستگاه بهمدل (.Giannoulaki et al., 2013ها در ارتباط با شرایط محیطی است )فراوانی این گونه
های (. مدلBrooks, 1997گیرد )تشخیص ارتباط بین الگوهای توزیع گونه و متغیرهای زیستی/غیرزیستی مورد استفاده قرار می

های شوند، اهمیت زیادی در ارزیابی فضایی و مدیریت صید گونهلوبیت زیستگاه نیز شناخته میهای مطای که با نام مدلتوزیع گونه
های محیطی ترکیب ها اطلاعات مکانی مربوط به فراوانی ماهیان را با داده(. این مدلTian et al., 2009تجاری ماهیان دارند )
(. Zwolinski et al., 2011; Moëzzi et al., 2022پردازند )ها میهای بهینه شرایط زیستگاهی برای آنکرده و به ارزیابی بازه

( mechanistic(، مکانیکی )analytical( )Pickett et al., 1994های تحلیلی )صورت مدلهای زیستگاهی بهطور کلی، مدلبه
(Prentice, 1986( و تجربی )empirical( )Korzukhin et al., 1996قابل طبقه ) هستندبندی. 

سازی ارتباطات توزیع ماهی و شرایط کیفی زیستگاهی، سازی مورد استفاده در کمیّهای مدلدر میان طیف گسترده تکنیک
ها مورد استفاده های آنطور گسترده با توجه به مزیت( بهhabitat suitability index: HSIهای تجربی مطلوبیت زیستگاه )مدل
های تجاری ماهیان نیز بکار طور عمده در مدیریت و تحقیقات مربوط به توزیع گونهبه HSIهای گیرند. مدلشناسان قرار میبوم

 ,.Mondal et al., 2021; Vaz et al., 2021; Moëzzi et al., 2022; Wang et al., 2022; Wang et alاند )گرفته شده

های اصلی مکانی ذخایر آبزیان از جمله تعریف زیستگاهتواند نقش مهمی در توسعه معیارهای مدیریت می HSIسازی (. مدل2023
 ,.Chang et alهای مهم داشته باشد )شده دریایی برای گونهماهیان، شناخت نقاط بهینه ماهیگیری و استقرار نواحی حفاظت

2012; Johnson et al., 2013; Tanaka and Chen, 2015رد استفاده قرار ها در طیف متنوعی از موارد کاربرد مو(. این مدل
های با اهمیت تجاری اشاره سازی توزیع گونهتوان به تخصیص مناطق حفاظت شده دریایی تا مدلگیرند که از آن جمله میمی

ها و تحقیقات مرتبط دست آمده از این مدلها بهکرد. الگوهای زمانی یا مکانی ترجیح زیستگاهی و شناسایی نقاط داغ حضور گونه
 ,.Chen et alها را فراهم سازد )برداری و حفاظت از گونهتواند مبنای روشن و کارآمدی برای مدیریت مناسب بهرهها میبا آن

ای های حیات گونههای کلیدی در چرخهای و شناسایی زیستگاههای مطلوب گونههای قابل اعتماد از زیستگاه(. ارائه نقشه2012
 HSI(. مدل Chang et al., 2012باشد )کننده تواند برای مدیران شیلاتی بسیار کمکمیها عنوان بخشی از خروجی این مدلبه

عنوان تابعی از یک یا تعداد بیشتری متغیر محیطی است که مطلوبیت زیستگاه ( بهSIهای مطلوبیت )ای از شاخصمبتنی بر مجموعه
، HSIهای (. مدلBrown et al., 2000; Tian et al., 2009; Chen et al., 2010کنند )را برای یک گونه هدف بیان می

مطلوبیت زیستگاهی یک گونه را در مقیاسی عددی بین صفر )کمترین سطح مطلوبیت( و یک )بیشترین سطح مطلوبیت( بر مبنای 
د، باشن( که توضیح دهنده ارتباط بین متغیرهای زیستی/غیرزیستی و فراوانی گونه میSIهای منفرد )ترکیبی از شاخص
( عمدتاً جهت ایجاد abundance index: AI، شاخص فراوانی )HSIسازی (. در مدلFranklin, 2010کنند )استانداردسازی می

( و Tian et al., 2009; Tanaka and Chen, 2016گیرد )شاخص مطلوبیت برای هر متغیر زیستگاهی مورد استفاده قرار می
های فراوانی وجود های مطلوبیت و شاخصد که یک رابطه خطی مثبت بین شاخصشوطور کلی این فرض در نظر گرفته میبه

( و نواحی با SI = 1.0های بهینه )به عنوان زیستگاه AIطوری که نواحی دارای بیشترین مقادیر ( بهChang et al., 2013دارد )
های (. دادهBrown et al., 2000; Tian et al., 2009شوند )( شناخته میSI = 0های فقیر )به عنوان زیستگاه AIکمترین مقادیر 

ها در ساختار این هایی ارزشمند و شاخص از فراوانی گونهعنوان دادهتوده، تلاش صیادی و نرخ صید بهشیلاتی تجاری نظیر زی
متغیرهای زیستگاهی چینش مجموعه وزنی برای  (.Li et al., 2014; Moëzzi et al., 2022گیرند )ها مورد استفاده قرار میمدل

های متفاوت دهی(. تأثیر استفاده از وزنGong et al., 2012را تحت تأثیر قرار دهد ) HSIسازی تواند تا حد زیادی مدلمختلف می
 Changبایست به دقت مورد بررسی قرار گیرد )های زیستگاه میدهی این متغیرها در مدلمتغیرهای زیستگاهی بر میزان مشارکت

et al., 2010; Yi et al., 2016سازی (. در مدلHSIدلیل عدم وجود اطلاعات کافی درباره سهم تأثیر پارامترهای محیطی ، به
 ;Tian et al., 2009گیرند )طور معمول تمامی متغیرها با فرض داشتن وزن همسان مورد استفاده قرار میبر پراکنش گونه، به
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Yu et al., 2016های فراوانی است که کاملاً غیرواقعتأثیرگذاری یکسان متغیرهای محیطی بر شاخص (. این وضعیت مبتنی بر-

گردد های متفاوتی از توزیع زیستگاهی مطلوب میبینانه است. نشان داده شده است که برآوردهای وزنی مختلف منجر به شکل
(Gong et al., 2012)ها از ای، در توسعه مدلهای منطقی از توزیع گونهبینیمنظور دستیابی به پیش. از این جهت، لازم است به

 تمایز قائل شود. رویکردی استفاده گردد که بین نقش متغیرهای محیطی در ایجاد مدل

ای در بینی توزیع گونههای یادگیری ماشین در تعیین سهم مشارکت متغیرهای محیطی در پیشها و تکنیکاستفاده از برخی روش
(. Zohmann et al., 2013; Torres et al., 2015; Yi et al., 2016; Xue et al., 2017رفته است )برخی مطالعات صورت گ

های فراوانی گونه ارزیابی شده و بر این اساس، سهم ها، ارتباط بین تناسب مجموعه پارامترهای محیطی و شاخصدر این روش
(. Xue et al., 2017گردد )واریانس توزیع فراوانی محاسبه میبین در توضیح عنوان عوامل پیشنسبی هر یک از پارامترها به

 HSIتواند تا در برخی موارد منجر به تأثیر قابل ملاحظه بر مقادیر می HSIسازی دهی شده در مدلبکارگیری رویکردهای وزن
. این وضعیت ممکن است منجر (Gong et al., 2012داشته باشد ) HSIپایین گردد، در صورتی که تأثیر کمتری بر مقادیر بالای 

های فراوانی گردد. از این جهت، لازم به بیش برآورد سطوح مطلوبیت زیستگاهی در مقایسه با وضعیت واقعی مبتنی بر شاخص
است وجود یک رویکرد ساختارمند مشخص جهت اختصاص اوزان متناسب به متغیرهای محیطی در مدلسازی زیستگاه مورد بررسی 

 قرار گیرد.
پرداخته شده است. بدین  HSIهای بینی مدلدهی پارامترهای محیطی زیستگاهی بر عملکرد پیشمطالعه حاضر، تأثیر وزندر 

های محیطی های صید بلندمدت و همچنین داده( با توجه به دسترسی به دادهRutilus frisiiمنظور ماهی سفید دریای خزر )
های عنوان مورد مطالعاتی مورد استفاده قرار گرفت. ماهی سفید از گونهگاهی بهزیستگاهی اثرگذار بر پراکنش آن در نقاط صید

های جنوبی خزر پراکنش داشته و مهمترین گونه از ماهیان استخوانی از نظر صید تجاری بومی دریای خزر است که عمدتاً در آب
(. روش مدلسازی ماشین بردار پشتیبان Moëzzi et al., 2022; Moëzzi et al., 2024گردد )و مباحث حفاظتی محسوب می

(support vector machine: SVMنیز به ) عنوان تکنیک مورد استفاده جهت برآورد سهم نسبی متغیرهای محیطی در توضیح
 توزیع پراکندگی ماهی بکار گرفته شد. 

 

 

 

 

 

 هاروشمواد و 
عنوان مورد مطالعاتی مورد استفاده قرار گرفت. این ( بهRutilus frisiiهای صید ماهی سفید دریای خزر )در این مطالعه، داده

 03/2002)فصول صید  2012تا  2002های های صید پره ساحلی در نوار ساحلی جنوب خزر در بازه سالها مربوط به صیدگاهداده
( با catch-per-unit-of-effort: CPUEها، مقادیر صید در واحد تلاش صیادی )( بود. جهت استانداردسازی داده12/2011تا 

 عنوان شاخصی از فراوانی ماهی مورد استفاده قرار گرفت.( محاسبه گردید و به1استفاده از رابطه )
 

𝐶𝑃𝑈𝐸 (𝑘𝑔 𝑠𝑒𝑖𝑛𝑒−1ℎ−1) =
(𝑘𝑔)صید 

(𝑠𝑒𝑖𝑛𝑒)تعداد تور پره × (ℎ)زمان صید 
 (رابطه 1)                      

 
 سازی مورد استفاده قرار گرفت.عنوان متغیر پاسخ در فرآیند مدلها بهدر طول هر فصل صید در صیدگاه CPUEمیانگین مقادیر 
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 Moëzziهای سنجش از دور متغیرهای محیطی دارای تأثیر شناخته شده بر پراکنش گونه مورد مطالعه )ای از دادهمجموعه

et al., 2022قرار گرفتند که عبارت بودند از: دمای سطحی آب دریا در روز )بین مورد استفاده عنوان متغیرهای پیش( بهday-

time sea surface temperature: SST(ºC)؛ غلظت کلروفیل)-a ( در لایه سطحی آبnear surface chlorophyll-a 

)3-concentration: CHL(mg m؛ غلظت کربن آلی ذره)( ای)3-particulate organic carbon: POC(mg m ؛) فاصله صیدگاه
از پایگاه داده  POCو  SST ،CHLهای مربوط به متغیرهای (. دادهSlope (º)(؛ شیب بستر )km) Distanceاز دهانه رودخانه )

( استخراج گردید و NASA Goddard Space Flight Center, Ocean Ecology Laboratory (2021)) MODISپروژه 
با استفاده  R (version: 4.1.2)افزار در محیط نرم 2012تا  2002های زمانی سال در دورهبرداشت مقادیر آنها در نقاط صیدگاهی 

 GEBCOدست آمده از پایگاه داده سنجی بهشیب در نقاط صیدگاهی، از نقشه عمق انجام گرفت. جهت تهیه نقشه rasterاز بسته 

(The General Bathymetry Chart of the Oceans, 2021) شد. فاصله بین نقاط صیدگاهی تا دهانه رودخانه  استفاده
(Distanceنیز بر اساس نزدیک )های اصلی ورودی به جنوب دریای خزر در امتداد ساحل ترین فاصله مستقیم تا دهانه رودخانه

کل  %80) 10/2009تا  03/2002های صید های محیطی و صید مربوط به دوره(. دادهMoëzzi et al., 2022محاسبه گردید )
کل مجموعه داده( جهت  %20) 12/2011و  11/2010های صید های مربوط به دورهها و دادهمجموعه داده( جهت آموزش مدل

 ها مورد استفاده قرار گرفت.     مدل بینیآزمون پیش
و  CPUEنای مقادیر منظور محاسبه سهم نسبی پارامترهای محیطی موردنظر در توضیح واریانس فراوانی ماهی سفید بر مببه

( استفاده گردید. این تکنیک، SVMهای شاخص مطلوبیت این متغیرها از تکنیک ماشین بردار پشتیبان )همچنین برازش منحنی
ای مورد استفاده ( است که در مطالعات مختلف توزیع گونهmachine learning: MLهای کارآمد یادگیری ماشین )یکی از روش

 SVM(. برازش مدل Mugo and Saitoh, 2020; Martinez-Santos et al., 2021; Raman et al., 2023قرار گرفته است )
منظور تعیین ترکیب بهترین با کرنل رادیال )شعاعی( انجام شد. به e1071” (version 1.7-11)“از بسته  svmبا استفاده از تابع 

استفاده گردید. میزان اهمیت  mixOmix” (version 6.3.2)“از بسته  tune( از تابع costو  gammaترکیب پارامترهای مدل )
دست آمد. رسم نمودارهای وابستگی نسبی به”randomForest“از بسته  Importanceنسبی متغیرها در مدل با استفاده از تابع 

استفاده  pdp” (version 0.8.0)“ از بسته partial(( از تابع SIهای شاخص مطلوبیت )متغیرهای مدل )یا به عبارت دیگر منحنی
 گردید.

( استفاده 2شده، از رابطه )برآوردشده نرمال CPUEبرای هر یک پارامترهای محیطی، براساس مقادیر  SIجهت محاسبه مقادیر 
 شد:  

 

𝑆𝐼̂𝑖 =
𝐶𝑃𝑈𝐸̂𝑖 − 𝐶𝑃𝑈𝐸̂𝑚𝑖𝑛

𝐶𝑃𝑈𝐸̂𝑚𝑎𝑥 − 𝐶𝑃𝑈𝐸̂𝑚𝑖𝑛

 (رابطه 2)                             

 
ام از iبرآوردشده برای مقدار  CPUEمقدار میانگین  𝐶𝑃𝑈𝐸̂𝑖بین، ام از متغیر پیشiبرآوردشده برای مقدار  SIمقدار  𝑆𝐼̂𝑖که در آن 

برآوردشده برای متغیر مورد بررسی است  CPUEنیز مقادیر حداقل و حداکثر  𝐶𝑃𝑈𝐸̂𝑚𝑎𝑥و  𝐶𝑃𝑈𝐸̂𝑚𝑖𝑛بین، و متغیر پیش
(Moëzzi et al., 2022 جهت محاسبه مقادیر نهایی .)HSI  برای نقاط صیدگاهی بر مبنای مقادیرSI  مجموعه پارامترهای محیطی

دهی (، مدل میانگین حسابی وزن3( )رابطه arithmetic mean model: AMMاز رویکردهای محاسباتی مدل میانگین حسابی )
 :geometric mean model(، مدل میانگین هندسی )4ابطه ( )رweighted arithmetic mean model: WAMMشده )

GMM و مدل میانگین هندسی وزن5( )رابطه )( دهی شدهweighted geometric mean model: WGMM استفاده 6( )رابطه )
 گردید:

𝐻𝑆𝐼̂
𝑖 =

1

𝑛
∑ 𝑆𝐼̂𝑖

𝑛

𝑖=1

 (رابطه 3)                               
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𝐻𝑆𝐼̂
𝑖 = ∑ 𝑊̂𝑖𝑆𝐼̂𝑖

𝑛

𝑖=1

 (رابطه 4)                              

𝐻𝑆𝐼̂
𝑖 = √∏ 𝑆𝐼̂𝑖

𝑛

𝑖=1

𝑛

 (رابطه 5)                              

𝐻𝑆𝐼̂
𝑖 = ∏ 𝑆𝐼̂𝑖

𝑊̂𝑖

𝑛

𝑖=1

 (رابطه 6)                              

 
اد متغیرهای محیطی مورد استفاده تعد nام، و iمقدار سهم نسبی پارامتر  𝑊̂𝑖ام، iبرای پارامتر محیطی  SIمقدار  𝑆𝐼̂𝑖در این روابط 

 است.  HSIدر برازش مدل 
به عنوان شاخص فراوانی ماهی، از شکل  CPUEبا سطوح واقعی  HSIهای شده مدلبینیمنظور ارزیابی مقادیر پیشبه

( انجام 7استفاده شد که محاسبه آن با استفاده از رابطه ) [1 ,0]( )در مقیاس stCPUEاستاندارد شده صید در واحد تلاش صیادی )
 گرفت:

 

𝑠𝑡𝐶𝑃𝑈𝐸𝑖𝑗 =  
𝐶𝑃𝑈𝐸𝑖𝑗 − 𝐶𝑃𝑈𝐸𝑚𝑖𝑛

𝐶𝑃𝑈𝐸𝑚𝑎𝑥 − 𝐶𝑃𝑈𝐸𝑚𝑖𝑛
 (رابطه 7)                  

 
ترتیب به 𝐶𝑃𝑈𝐸𝑚𝑎𝑥و  𝐶𝑃𝑈𝐸𝑚𝑖𝑛ام. همچنین، jام در سال iدر صیدگاه  CPUEعبارت است از مقدار  𝐶𝑃𝑈𝐸𝑖𝑗در این رابطه 

 باشد. های دوره زمانی مورد بررسی میها و کل سالدر تمامی صیدگاه CPUEکمترین و بیشترین مقادیر 
( )رابطه root mean square error: RMSE، ریشه میانگین مربعات خطا )stCPUEو  HSIدر ادامه، با استفاده از مقادیر 

 (( محاسبه گردید:8)
 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑖 − 𝑥𝑖)2𝑛

𝑖=1

𝑁
 (رابطه 8)                        

 
( rها است. از ضریب همبستگی پیرسون )برآورد شده توسط مدل HSIنیز مقادیر  𝑥𝑖و  stCPUEمعادل مقادیر  𝑥𝑖در این رابطه، 

های نقاط در پایان چگونگی توزیع نسبت برآورد شده استفاده گردید. همچنین، HSIو  stCPUEجهت بررسی میزان تطابق مقادیر 
[ مقایسه 0/0, 2/0[، )2/0, 4/0[، )4/0, 6/0[، )6/0, 8/0[، )8/0, 0/1های ]در بازه stCPUEو  HSIصیدگاهی بر اساس مقادیر 

 گردید.

 نتایج
( SST( نشان داد که دمای سطحی آب دریا )1)جدول  SVMهای مقادیر وزن نسبی متغیرهای محیطی مورد استفاده در مدل

 231/0؛ SST=  315/0اند )ترتیب بیشترین مقادیر اهمیت را در توضیح پراکنش ماهی داشته( بهPOCای )و غلظت کربن آلی ذره
 =POC کمترین وزن نیز در میان مجموعه متغیرهای مورد استفاده متعلق به عامل فاصله از دهانه رودخانه .)(126/0  =Distance )

 بود.
 (.SVMماشین بردار پشتیبان ) . مقادیر وزن متغیرهای محیطی حاصل از برازش مدل1جدول 

 CHL SST POC Slope Distance بینمتغیر پیش
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 126/0 186/0 231/0 315/0 142/0 وزن نسبی

 

(( distance)به استثنای فاصله از دهانه رودخانه )بین دست آمده برای بیشتر متغیرهای پیشبه(SIنمودارهای شاخص مطلوبیت )
برای این  SIهای دارای بیشترین مقادیر (. بازه1ای شکل با پیک مشخص را نشان دادند )شکل روندهایی منظم و عمدتاً زنگونه

 0/33º – 0/25؛ mg m 5100 – 4200 :POC-3؛ ºC 25 – 24 :SST؛ mg m 17 – 13 :CHL-3پارامترها عبارت بودند از: 
:Slopeبین فاصله از دهانه رودخانه روندی کاهشی از سطح مطلوبیت را با افزایش فاصله به دست آمده برای متغیر پیش . منحنی

 بود.  km 10 – 0از دهانه رودخانه نشان داد به طوری که بیشترین مطلوبیت نقاط حضور ماهی مربوط به بازه 
 

 
: غلظت CHL) .(SVM) های ماشین بردار پشتیبان( برای متغیرهای زیستگاهی حاصل از مدلSIهای شاخص مطلوبیت ). منحنی1شکل 

(؛ º: شیب بستر )Slope(؛ mg m-3ای ): غلظت کربن آلی ذرهPOC(؛ Cº: دمای سطحی آب دریا )SST(؛ mg m-3کلروفیل در لایه سطحی آب )

Distance( فاصله از دهانه رودخانه :km.)) 

 HSIمربوط به مدل  RMSE( بر مبنای مقادیر 2بینی )جدول برازش یافته، بهترین عملکرد پیش HSIهای در میان مدل
؛ آزمون: RMSE=  1818/0( برای هر دو مجموعه داده آموزش و آزمون بود )آموزش: WGMMHSIدهی شده )میانگین هندسی وزن

2540/0  =RMSE همچنین، مدل .)WGMMHSI( بیشترین ضریب همبستگیrرا ) ( 4693/0در هر دو مرحله آموزش  =r و آزمون )
=  4023/0ترین عملکرد را در مراحل آموزش )ضعیف WAMMHSIخود اختصاص داد. با این حال، مدل ( بهr=  1953/0مدل )
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RMSE 3843/0؛  =r( و آزمون مدل )3858/0  =RMSE 1360/0؛  =rدهی، عملکرد های فاقد وزن( نشان داد. در میان مدل
در هر دو مرحله آموزش و  AMMHSIو مقدار بیشتر ضریب همبستگی در مقایسه با  RMSEبا داشتن مقدار کمتر  GMMHSI مدل

 (. 2آزمون بهتر بود )جدول 
 

: AMMHSIمطلوبیت زیستگاه. ) های شاخص( مدلr( و ضریب همبستگی پیرسون )RMSEخطای میانگین مجذور مربعات ) . مقادیر2جدول 

: مدل میانگین هندسی WGMMHSIدهی شده؛ : مدل میانگین حسابی وزنWAMMHSI: مدل میانگین هندسی؛ GMMHSIمدل میانگین حسابی؛ 

 دهی شده(وزن

 RMSE r مدل 

 آموزش

AMMHSI 3841/0 4047/0 

GMMHSI 2970/0 4215/0 

WAMMHSI 4023/0 3843/0 

WGMMHSI 1818/0 4693/0 

 آزمون

AMMHSI 3665/0 1519/0 

GMMHSI 3276/0 1658/0 

WAMMHSI 3858/0 1360/0 

WGMMHSI 2540/0 1953/0 

 
 

که  ( نشان داد2)شکل  12/2011و  11/2010های صید های توزیع نقاط در طبقات زیستگاهی در دورهمقایسه نسبت
( stCPUEو طبقات زیستگاهی مبتنی بر مقادیر استاندارد شده صید در واحد تلاش صیادی ) WGMMHSIهای حاصل از مدل خروجی

کمترین همپوشانی را با  WAMMHSIو  AMMHSIهای از تشابه بالایی برخوردار بود. مدل HSIهای در مقایسه با دیگر مدل
ها فاقد نقاط متعلق به طبقه دارای های این مدلطوری که خروجیداشتند به stCPUEهای نقاط صیادی در طبقات مبتنی بر نسبت

 4/0( بوده و نسبت بالایی از نقاط متعلق به طبقات با سطوح مطلوبیت بالاتر ):HSI 0/0 – 2/0کمترین سطوح مطلوبیت زیستگاه )
<HSI شرایط زیستگاهی بینی مطلوبیت ها در پیشبرازش حاصل از آندست آمد که بیانگر بیشها بههای این مدل( از خروجی

 بوده است. 
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. توزیع نسبت نقاط ماهیگیری متعلق به طبقات شاخص مطلوبیت زیستگاهی و همچنین مقادیر استاندارد شده صید در واحد تلاش 2شکل 

: مدل GMM: مدل میانگین حسابی؛ AMM: صید در واحد تلاش استاندارد شده؛ stCPUE. )12/2011و  11/2010صیادی در فصول صید 

 دهی شده(: مدل میانگین هندسی وزنWGMMدهی شده؛ : مدل میانگین حسابی وزنWAMMمیانگین هندسی؛ 

 

 بحث
گردد های آبزی محسوب مییکی از رویکردهای پرکاربرد مورد استفاده در تحقیقات مربوط به توزیع گونه HSIمدلسازی 

 Mondal et al., 2021; Vazشود )عنوان روشی کارآمد به کار گرفته میرغم سابقه طولانی استفاده از آن، همچنان به که علی

et al., 2021; Wang et al., 2022; Wang et al., 2023های (. یکی از عوامل مهم در ارتقای عملکرد و اعتبار مدلHSI 
جدید یادگیری ماشین جهت های (. مطالعات متعددی استفاده از روشTian et al., 2009است ) SIهای برازش مناسب منحنی

 ,.Elith et al., 2008; Xue et alاند )های زیستگاهی و تعیین سهم وزن متغیرهای محیطی را گزارش دادهبرازش کارآمد مدل

2017; Torre et al., 2018( در مطالعه حاضر، از تکنیک ماشین بردار پشتیبان .)SVMهای کارآمد یادگیری ( که یکی از مدل
( و تعیین وزن متغیرهای محیطی استفاده گردید. این روش SIهای مطلوبیت )گردد، جهت برازش شاخصب میماشین محسو

ای مورد استفاده های توزیع گونههای در دسترس در بررسیهای مدلسازی و انواع مختلف دادهصورت ترکیبی با دیگر رویکردبه
دست آمده (. نتایج بهMugo and Saitoh, 2020; Martinez-Santos et al., 2021; Raman et al., 2023قرار گرفته است )

قابلیت بالایی در تشخیص روندهای غیرخطی موجود بین پارامترهای محیطی و  SVMدر این مطالعه به خوبی نشان داد که مدل 
ح بهینه تأثیرگذاری عوامل طوری که در ارتباط با بیشتر متغیرها، تشخیص سطوباشد بهشاخص فراوانی توزیع ماهی را دارا می

دست آمده وزن متغیرها های محدود و مشخص قابل تشخیص بود. براساس مقادیر بهمحیطی مورد بررسی بر پراکنش ماهی در بازه
( و پس از آن SSTعبارت دیگر، اهمیت این پارامترها در توضیح واریانس پراکنش ماهی(، متغیر دمای سطحی آب دریا ))یا به

( با داشتن بیشترین مقادیر وزنی، بالاترین نقش را در توضیح پراکنش گونه مورد بررسی داشتند. POCای )آلی ذره غلظت کربن
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اند این دو عامل در برخی از مطالعات قبلی نیز به عنوان عوامل مهم اثرگذار بر توزیع ماهی سفید دریای خزر تشخیص داده شده
(Moëzzi et al., 2022; Moëzzi et al., 2023 اهمیت این دو عامل تا حد زیادی مرتبط با فرآیندهای فیزیولوژیک مربوط به .)

ای با درنظر گرفتن سطوح بالای تولید ثانویه بنتیک ( و همچنین، دسترسی به مناطق تغذیهHua et al., 2020مهاجرت ماهی )
(Zhang et al., 2019; Moëzzi et al., 2022 .مرتبط دانسته شده است ) 

های مورد استفاده در محاسبه مقادیر شاخص مطلوبیت زیستگاه در مطالعه حاضر نشان داد که در هر مقایسه عملکرد روش
در مقایسه با روش  GMMبا استفاده از روش  HSIدهی شده، محاسبه های وزندهی و مدلهای فاقد وزندو مجموعه مدل

AMM ها زیستگاهی منتج شده است. مطالعات صورت گرفته با استفاده از این روشتری از شرایط تر و دقیقبه برآوردهای مناسب
اند تر توزیع ماهی گزارش دادهبینی مناسبها در پیشنتایج متفاوتی را در ارتباط با برتری نسبی این روش HSIدر محاسبه مقادیر 

(Xue et al., 2017به .)های لطور کلی انتخاب رویکردهای مختلف در ساختاردهی مدHSI  یکی از مباحث مهم در توسعه
های متفاوت حاصل از این (. تفاوت در خروجیVincenzi et al., 2007شود )ای قلمداد میمرتبط با توزیع گونه HSIهای مدل
-دیتها و همچنین محدوها و مفروضات متفاوت مربوط به هر یک از آندر این روش SIهای ها به تفاوت در شکل ادغام مدلمدل

فرض  AMM(. رویکرد Li et al., 2016های فراوانی گونه مورد بررسی نسبت داده شده است )های آنها در تناسب با شاخص
گیرد و پذیری آن در نظر میبا توجه به مبنای جمع HSIیکسان بودن تأثیرگذاری متغیرهای ورودی را در چهارچوب محاسباتی 

برآورد مقادیر شود که در برخی از موارد منتج به بیشاز متغیرها در آن نادیده گرفته میاثرات محدودکننده سطوح نامطلوب برخی 
 AMMدست آمده در مطالعه حاضر برای مدل گردد. این وضعیت که به طور مشخص در نتایج بهمحاسباتی می HSIنهایی 

(. این در حالی Tian et al., 2009; Chang et al., 2013مشاهده گردید، در دیگر مطالعات نیز مورد اشاره قرار گرفته است )
گردد تا مقادیر کمتر برخی از متغیرها در محاسبه مربوط به متغیرها سبب می SIپذیری مقادیر ، ضربGMMاست که در رویکرد 

نهایی و توزیع فراوانی گونه  HSIبیشتر دخالت داده شده و تطابق بیشتری بین مقادیر  AMMدر مقایسه با روش  HSIمقادیر 
های حاصل از مدل بینیمورد بررسی به دست آید. چنین وضعیتی در نتایج به دست آمده در مطالعه حاضر از نظر تناسب پیش

GMM دهی( با توزیع دهی شده و فاقد وزن)وزنstCPUE  مشاهده شد. با این حال، این تأثیرات با افزایش تعداد متغیرهای
( که Xue et al., 2017یابد )استفاده در مدلسازی و کاهش سهم تأثیرگذاری کلی هر یک از متغیرها کاهش می ورودی مورد

 دهد.را تقلیل می HSIامکان قضاوت صحیح در مورد روش مورد استفاده در محاسبه 
بین حاصل از پیش طیدهی متغیرهای محیهای به دست آمده در مطالعه حاضر نشان داد استفاده از سناریوی وزنیافته

بینی را به همراه داشته توجه ارتقای دقت پیشبه شکلی قابل GMMبرای روش محاسباتی  HSIدر ساختار مدل  SVMهای مدل
ترین عملکرد ضعیف AMMمبتنی بر روش محاسباتی  HSIبین در مدل دهی متغیرهای پیشاست. این در حالی است که وزن

فاقد  AMMهای برازش یافته سبب شد به طوری که حتی عملکرد این مدل در مقایسه با مدل مدل را در میان مجموعه مدل
بندی شده بر اساس سطح مطلوبیت زیستگاهی های طبقهتر بوده است. بررسی توزیع نقاط صیدگاهی در گروهدهی نیز ضعیفوزن

برآرود سطح منجر به بیشGMMHSIن کمتر، مدل و به میزا AMMHSI ،WAMMHSIهای به وضوح بیانگر این واقعیت بود که مدل
 شده است به طوری که سهم stCPUEمطلوبیت زیستگاهی در نقاط صیدگاهی در مقایسه با توزیع طبقات زیستگاهی مبتنی بر 

ته ( اختصاص یاف>HSI 4/0تر )ها به طبقات زیستگاهی با مطلوبیت کمهای این مدلناچیزی از نقاط صیدگاهی بر اساس خروجی
در طبقات با مطلوبیت  WGMMHSIو همچنین خروجی  stCPUEبندی مبتنی بر و در مقابل تعداد زیادی از نقاط بر خلاف گروه

تا حد زیادی متفاوت  HSIهای مختلف محاسبه دهی در روشاند. از این نظر تأثیر وزن( قرار داشته< HSI 6/0زیستگاهی بالاتر )
در مطالعات معدودی مورد  HSIهای های متفاوت به متغیرهای زیستگاهی مختلف در مدلبوده است. پیامدهای اختصاص وزن

طور کلی، تأثیر بکارگیری (. بهGong et al., 2012; Yi et al., 2016; Zohmann et al., 2013بررسی قرار گرفته است )
 Changبایست با دقت مورد بررسی قرار گیرد )ها میدهی این متغیرها در مدلدهی متغیرهای زیستگاهی بر میزان مشارکتوزن

et al., 2010; Yi et al., 2016های مختلف های وزنی در مدل( به شکلی که چینشHSI ها را تواند تا حد زیادی خروجیمی
قت دهی افزایش داستفاده از سناریوهای وزن Xue et al. (2017)(. در مطالعه Gong et al., 2012تحت تأثیر قرار دهد )
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همراه داشته است که از نظر عملکرد مدل دهی نشده بههای وزنرا در مقایسه با مدل GMMو  AMMهای بینی مدلپیش
AMM های مربوط به شاخص فراوانی باشد. چنین تناقضی ممکن است مرتبط با واریانس دادههای حاضر میدر تضاد با نتایج یافته

تواند در برخی موارد منجر به می HSIسازی شده در مدلدهیاستفاده از رویکردهای وزنگونه و شکل کلی توزیع آن بوده باشد. 
(. این Gong et al., 2012داشته باشد ) HSIپایین گردد اما تأثیر کمتری بر مقادیر بالای  HSIتأثیر قابل ملاحظه بر مقادیر 

وح مطلوبیت زیستگاهی در مقایسه با وضعیت واقعی مبتنی بر های فراوانی کمتر و سطها برای دادهآورد مدلوضعیت منتج به بیش
توان گفت استفاده از مشهود بود. از این جهت می WAMMHSIهای فراوانی گردد که در مطالعه حاضر نیز برای مدل شاخص

شد آنچنان که بر باو نتایج نهایی حاصل از آن تا حد زیادی وابسته به نوع مدل می HSIهای نسبی در محاسبات مدلسازی وزن
 GMMکاهش داده و ارتقای قابل توجه عملکرد مدل را در رویکرد  AMMبینی را در رویکرد محاسباتی ها، دقت پیشاساس یافته

 به همراه داشته است.

 

 یریگجهینت

بر  GMMو  AMMهای محاسباتی در روش HSIهای بین در ساختار مدلدهی متغیرهای پیشدر مطالعه حاضر، تأثیر وزن
دهی دست آمده نشان داد که در شرایط عدم استفاده از وزنهای بهها مورد بررسی قرار گرفت. یافتهبینی مدلعملکرد نهایی پیش

داشته است. استفاده از سهم نسبی متغیرها در توضیح مقادیر  AMMتری در مقایسه با مدل عملکرد مناسب GMMمتغیرها، مدل 
دهی شده را به شکلی قابل توجه به همراه داشت وزن GMMارتقای عملکرد مدل  SVMهای از مدل صید گونه مطالعاتی حاصل

طوری که تطابق بالایی بین توزیع نقاط صیدگاهی در طبقات مطلوبیت زیستگاهی حاصل از این مدل با طبقات زیستگاهی حاصل به
دهی متغیرها، تنزل عملکرد مدل ین حال، استفاده از وزندست آمد. در ع( بهstCPUEاز شاخص فراوانی استاندارد شده صید )

AMM دهنده دست آمده در این مطالعه در مجموع نشانهای بهدهی به همراه داشت. یافتهرا در مقایسه با وضعیت بدون وزن
لوبیت زیستگاه های کارآمدتر محاسبه شاخص مطبین و همچنین استفاده از روشدهی مناسب متغیرهای پیشاهمیت تأثیر وزن

(HSIدر افزایش دقت نتایج مدل )HSI تواند در بینی سطوح صید ماهی سفید بود. بر این اساس، توجه به این موضوع میدر پیش
برداری و حفاظت ذخایر این گونه و سایر های مدیریتی مرتبط با بهرهتر از توزیع گونه در برنامهدستیابی به برآوردهای مناسب

 آبزیان مؤثر واقع گردد.های گونه
 

 سپاسگزاری
 این مطالعه با حمایت مالی بنیاد ملی نخبگان )طرح پسادکتری شهید چمران( و دانشگاه تهران انجام شده است.
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