دوره 14، شماره 4 - ( 11-1403 )                   جلد 14 شماره 4 صفحات 24-12 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moëzzi F, Eagderi S. The effect of weighting predictor variables on the performance of habitat suitability index (HSI) models (case study: Caspian Kutum, Rutilus frisii). J. Aqua. Eco 2025; 14 (4) :12-24
URL: http://jae.hormozgan.ac.ir/article-1-1123-fa.html
معزی فاتح، ایگدری سهیل. تأثیر وزن دهی متغیرهای پیش بین بر عملکرد مدل های شاخص مطلوبیت زیستگاه (HSI) (مطالعه موردی: ماهی سفید دریای خزر، Rutilus frisii). مجله بوم شناسی آبزیان. 1403; 14 (4) :12-24

URL: http://jae.hormozgan.ac.ir/article-1-1123-fa.html


چکیده:   (351 مشاهده)
در مطالعه حاضر، تأثیر وزن دهی متغیرهای پیش¬بین بر عملکرد پیش بینی مدل های شاخص مطلوبیت زیستگاه (HSI) مبتنی بر دو روش مدل میانگین حسابی (AMM) و مدل میانگین هندسی (GMM) مورد بررسی قرار گرفت. داده‌های صید ماهی سفید دریای خزر (Rutilus frisii) به‌عنوان مورد مطالعاتی مورد استفاده قرار گرفت و متغیرهای زیستگاهی مورد استفاده عبارت بودند از: دمای سطح آب دریا در روز، غلظت کلروفیل a در لایه سطحی آب، غلظت کربن آلی ذره¬ای، فاصله نقاط صیدگاهی از دهانه رودخانه و شیب بستر. محاسبه وزن نسبی پارامترهای محیطی و برازش مدل¬های شاخص مطلوبیت (SI) با استفاده از تکنیک ماشین بردار پشتیبان (SVM) انجام گرفت. دمای سطحی آب دریا و غلظت کربن آلی ذره ای به‌ترتیب با داشتن مقادیر 0.315 و 0.231، بیشترین مقادیر وزن را در توضیح واریانس صید ماهی به‌خود اختصاص دادند. ارزیابی پیش¬بینی مدل های برازش یافته در مراحل آموزش و آزمون مدل ها نشان داد که مدل HSI¬WGMM با داشتن کمترین مقادیر RMSE (آموزش: 0.1818؛ آزمون: 0.2540) و بالاترین ضریب همبستگی (آموزش: 0.4693؛ آزمون: 0.1953) بهترین عملکرد را به خود اختصاص داده و ضعیف‌ترین عملکرد نیز با مدل HSIWAMM (آموزش: 0.4023 = RMSE؛ 0.3843 = r؛ آزمون: 0.3858 = RMSE؛ 0.1360 = r) به‌دست آمد.
متن کامل [PDF 1744 kb]   (161 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
انتشار: 1403/11/29

فهرست منابع
1. Brooks, R.P., 1997. Improving habitat suitability index models. Wildlife Society Bulletin, 25, pp.163-167.
2. Brown, S.K., Buja, K.R., Jury, S.H., Monaco, M.E. and Banner, A., 2000. Habitat suitability index models for eight fish and invertebrate species in Casco and Sheepscot Bays, Maine. North American Journal of Fisheries Management, 20(2), pp. 408-435. https://doi.org/10.1577/1548-8675(2000)020<0408:HSIMFE>2.3.CO;2 https://doi.org/10.1577/1548-8675(2000)020<0408:HSIMFE>2.3.CO;2 [DOI:10.1577/1548-8675(2000)0202.3.CO;2]
3. Chang, J.H., Chen, Y., Holland, D. and Grabowski, J., 2010. Estimating spatial distribution of American lobster Hamarus americanus using habitat variables. Marine Ecology Progress Series, 420, pp. 145-156. [DOI:10.3354/meps08849]
4. Chang, Y.J., Sun, C.L., Chen, Y., Yeh, S.Z. and DiNardo, G., 2012. Habitat suitability analysis and identification of potential fishing grounds for swardfish, Xiphias gladitus, in the South Atlantic Ocean. International Journal of Remote Sensing, 33, pp.7523-7541. [DOI:10.1080/01431161.2012.685980]
5. Chang, Y.J., Sun, C.L., Chen, Y., Yeh, S.Z., DiNardo, G., and Su, N.J., 2013. Modelling the impacts of environmental variation on the habitat suitability of swardfish, Xiphias gladitus, in the equatorial Atlantic Ocean. ICES journal of Marine Science, 70(5), pp.1000-1012. [DOI:10.1093/icesjms/fss190]
6. Chen, X., Cao, J., Chen, Y., Liu, B. and Tian, S., 2012. Effect of the kuroshio on the spatial distribution of the red flying squid Ommastrephesbatramii in the Northwest Pacific Ocean. Bulletin of Marine Science, 88(1), pp. 63-71. [DOI:10.5343/bms.2010.1098]
7. Chen, X.J., Tian, S.Q., Chen, Y. and Liu, B.L., 2010. A modeling approach to identify optimal habitat and suitable fishing grounds for neon flying squid (Ommastrephesbartramii) in the Northwest Pacific Ocean. Fishery Bulletin, 108, pp.1-14. [DOI:10.5343/bms.2010.1098]
8. Elith, J., Leathwick, J.R. and Hastie, T., 2008. A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), pp.802-813. [DOI:10.1111/j.1365-2656.2008.01390.x]
9. Franklin, J., 2010. Mapping species distributions: spatial influence and prediction. Cambridge University Press. [DOI:10.1017/CBO9780511810602]
10. Giannoulaki, M., Iglesias, M., Tugores, M.P., Bonanno, A., Patti, B., De Felice, A.,Leonori, I., Bigot, J.L., Tiˇcina, V., Pyrounaki, M.M., Tsagarakis, K., Machias, A.,Somarakis, S., Schismenou, E., Quinci, E., Basilone, G., Cuttitta, A., Campanella,F., Miquel, J., Onate, D., Roos, D. and Valavanis, V., 2013. Characterizing thepotential habitat of European anchovy Engraulisencrasicolus in the Mediterranean Sea, at different life stages. Fisheries Oceanography, 22(2), pp.69-89. [DOI:10.1111/fog.12005]
11. Gong, C., Chen, X., Gao, F. and Chen, Y., 2012. Importance of weighting for multi-variable habitat suitability index model: A case study of winter-spring cogort of Ommastrephesbarteamii in the Northwestern Pacific Ocean. Journal of Ocean University of China, 11, pp. 241-248. [DOI:10.1007/s11802-012-1898-6]
12. Hua, C., Li, F., Zhu, Q., Zhu, G. and Meng, L., 2020. Habitat suitability of Pacific saury (Cololabissaira) based on a yield-density model and weighted analysis. Fisheries Research, 221, p.105408. [DOI:10.1016/j.fishres.2019.105408]
13. Johnson, A.F., Jenkins, S.R., Hiddink, J.G. and Hinz, H., 2013. Linking temperate demersal fish species to habitat: scales, patterns and future directions. Fish and Fisheries, 14(3), pp.256-280. [DOI:10.1111/j.1467-2979.2012.00466.x]
14. Korzukhin, M.D., Ter-Mikaelian, M.T. and Wagner, R.C., 1996. Process versus empirical models: which approach for forest management? Canadian Journal of Forest Research, 26(5), pp.879-887. [DOI:10.1139/x26-096]
15. Li, G., Cao, J., Zou, X., Chen, X. and Runnebaum, J., 2016. Modeling habitat suitability index for Chilean jack mackerel (Trachurusmurphyi) in the South East Pacific. Fisheries Research, 178, pp.47-60. [DOI:10.1016/j.fishres.2015.11.012]
16. Li, G., Chen, X, Lei, L. and Guan, W., 2014. Distribution of hotspots of chub mackerel based on remote-sensing data in coastal waters of China. International Journal of Remote Sensing, 35(11-12), pp. 4399-4421. [DOI:10.1080/01431161.2014.916057]
17. Martinez-Santos, P., Aristizabal, H.F., Diaz-Alcaide, S. and Gomez-Escalonilla, V., 2021. Predictive mapping of aquatic ecosystems by means of support vector machines and random forests. Journal of Hydrology, 595, p.126026. [DOI:10.1016/j.jhydrol.2021.126026]
18. Moëzzi, F., Poorbagher, H., Eagderi, S. and Feghhi, J., 2023. Comparing the performance of generalized linear model (GLM) and random forest (RF) models in predicting catch distribution of Caspian Kutum (Rutilus frisii). Journal of Fisheries (Iranian Journal of Natural Resources), 76(1), pp.27-38. (In Persian). [DOI:10.22059/jFISHERIES.2023.91491]
19. Moëzzi, F., Poorbagher, H., Eagderi, S., Feghhi, J., Dormann, C.F., Khorshidi Nergi, S. and Amiri, K., 2024. The importance of temporal scale in distribution modeling of migratory Caspian Kutum, Rutilus frisii.Ecology and Evolution, 14(9), p.e70259. [DOI:10.1002/ece3.70259]
20. Moëzzi, F., Poorbagher, H., Eagderi, S., Feghhi, J., Dormann, C.F., Khorshidi Nergi, S. and Amiri, K., 2022. Modelling habitat preference of Caspian Kutum, Rutilus kutum, using non-linear habitat suitability indices and generalized additive models. Regional Studies in Marine Scienc, 56, p.102715. [DOI:10.1016/j.rsma.2022.102715]
21. Mondal, S., HaghiVayghan, A., Lee, M-A., Wang, Y.-C. and Semedi, B., 2021. Habitat suitability modeling for the feeding ground of immature Albacore in the Southern Indian Ocean using satellite-derived sea surface temperature and chlorophyll data. Remote Sensing, 13, 2669. [DOI:10.3390/rs13142669]
22. Mugo, R. and Saitoh, S.I., 2020. Ensemble modeling of skipjack tuna (Katsuwonus pelamis) habitats in the western north pacific using satellite remotely sensed data: a comparative analysis using machine-learning models. Remote Sensing, 12(16), p.2591. [DOI:10.3390/rs12162591]
23. NASA., 2021. Goddard Space Flight Center, Ocean Ecology Laboratory.
24. Pickett, S.T.A., Burke, I.C., Dale, V.H., Gosz, J.R., Lee, R.G., Pacala, S.W. and Shachak, M., 1994. Integrated models of forested regions. In: Groffman, P.M. and Linkens, G.E. (eds). Integrated regional models: interactions between human and their environment. Springer. https://doi.org/10.1007/978-1-4684-6447-4_8 [DOI:10.1007/978-1-4684-6447-4-8]
25. Prentice, I.C., 1986. Some concepts and objectives of forest dgnamics research. Forest Dynamics Research in Western and Central Europe. PUDOC, Wageningen, 3241
26. Raman, R.K., Das, A.K., Manna, R.K., Sahu, S.K. and Das, B.K., 2023. Ability of machine learning models to identify preferred habitat traits of a small indigenous fish (Chanda nama) in a large river of peninsular India. Environmental Science and Pollution Research, 30(6), pp.16499-16509. [DOI:10.1007/s11356-022-23396-9]
27. Tanaka, K. and Chen, Y., 2015. Spatiotemporal variability of suitable habitat for American lobster (Homarus americanus) in Long Island Sound. Journal of Shellfish Research. 34(2), pp.531-543. https://doi.org/10.2983/035.034.0238 [DOI:10.2983/10.2983/035.034.0238]
28. Tanaka, K. and Chen, Y., 2016. Modeling spatiotemporal variability of the bioclimate envelope of Homarus americanus in the coastal waters of Maine and New Hampshire. Fisheries Research, 177, pp.137-152. [DOI:10.1016/j.fishres.2016.01.010]
29. The General Bathymetry Chart of the Oceans., 2021.
30. Tian, S., Chen, X., Chen, Y., Xu, L. and Dai, X., 2009. Evaluating habitat suitability indices derived from CPUE and fishing effort data for Ommatrephesbratramii in the northwestern Pacific Ocean. Fisheries Research, 95, pp.181-188. [DOI:10.1016/j.fishres.2008.08.012]
31. Torre, M., Tanaka, K. and Chen, Y., 2018. A spatiotemporal evaluation of Atlantic Sea scallop Placopectenmagellanicus habitat in the gulf of maine using a bioclimate envelope model. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science, 10, pp.224-235. [DOI:10.1002/mcf2.10022]
32. Torres, L.G., Sutton, P.J., Thompson, D.R., Delord, K., Weimerskirch, H., Sagar, P.M.,Sommer, E., Dilley, B.J., Ryan, P.G. and Phillips, R.A., 2015. Poor transferability of species distribution models for a pelagic predator, the Grey Petrel, indicates contrasting habitat preferences across ocean basins. PLoS One, 10(3), p.e0120014. [DOI:10.1371/journal.pone.0120014]
33. Vaz, L., Sousa, M. C., Gomez-Gesteira, M. and Dias, J. M., 2021. A habitat suitability model for aquaculture site selection: Ria de Avetro and Rias Baixas. Science of the Total Environment, 801, 149687. [DOI:10.1016/j.scitotenv.2021.149687]
34. Vincenzi, S., Caramori, G., Rossi, R. and De Leo, G.A., 2007. A comparative analysis of three habitat suitability models for commercial yield estimation of Tapes philippinarum in a North Adriatic coastal lagoon (Sacca di Goro, Italy). Marine Pollution Bulletin, 55(10), pp.579-590. [DOI:10.1016/j.marpolbul.2007.09.016]
35. Wang, D., Yu, J., Lin, Z. and Chen, P., 2023. Spatial-temporal distribution of fish larvae in the Pearl River estuary based on habitat suitability index model. Biology, 12, 603. [DOI:10.3390/biology12040603]
36. Wang, Y., Zhou, X., Chen, J., Xie, B. and Huang, L., 2022. Climate-induced habitat suitability changes intensify fishing impacts on the life history of large yellow croacker (Larimichthyscrocea). Ecology and Evolution, 12, e9342. [DOI:10.1002/ece3.9342]
37. Xue, Y., Guan, L., Tanaka, K., Li, Z., Chen, Y. and Ren, Y., 2017. Evaluating effects of rescaling and weighting data on habitat suitability modeling. Fisheries Research, 188, pp.84-94. [DOI:10.1016/j.fishres.2016.12.001]
38. Yi, Y., Sun, J. and Zhang, S., 2016. A habitat suitability model for Chinese sturgeon determined using the generalized additive method. Journal of Hydrology, 534, pp.11-18. [DOI:10.1016/j.jhydrol.2015.12.055]
39. Yu, W., Yi, Q., Chen, X. and Chen, Y., 2016. Modelling the effects of climate variability on habitat suitability of jumbo flying squid, Dosidicus gigas, in the Southeast Pacific Ocean of Peru. ICES Journal of Marine Science, 73(2), pp.239-249. [DOI:10.1093/icesjms/fsv223]
40. Zhang, M., Wu, Y., Qi, L., Xu, M., Yang, C. and Wang, X., 2019. Impact of the migration behavior of mesoplagic fishes on the compositions of dissolved and particulate organic carbon on the northern slope of the South China Sea. Deep Sea Research II, 167, pp.46-54. [DOI:10.1016/j.dsr2.2019.06.012]
41. Zohmann, M., Pennerstorfer, J. and Nopp-Mayr, U., 2013. Modelling habitat suitability for alpine rock ptarmigan (Lagopus mutahelvetica) combining object-based classification of IKONOS imagery and Habitat Suitability Index modelling. Ecological Modelling, 254, pp.22-32. [DOI:10.1016/j.ecolmodel.2013.01.008]
42. Zwolinski, J.P., Emmett, R.L. and Demer, D.A., 2011. Predicting habitat to optimize sampling of Pacific sardine (Sardinopssagax). ICES Journal of Marine Science, 68(5), pp.867-879. [DOI:10.1093/icesjms/fsr038]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به بوم‌شناسی آبزیان می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 All Rights Reserved | Journal of Aquatic Ecology

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)