دوره 15، شماره 2 - ( تابستان 1404 )                   جلد 15 شماره 2 صفحات 53-42 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Influence of environmental factors on the toxicity of abamectin pesticide in Artemia franciscana as a non-target organism. J. Aqua. Eco 2025; 15 (2) :42-53
URL: http://jae.hormozgan.ac.ir/article-1-1148-fa.html
خندان بارانی هاشم، پاکزاد توچایی ساحل، سنچولی نرجس. تاثیر برخی عوامل محیطی بر سمیت آفت کش آبامکتین بر Artemia franciscana به عنوان گونه ای غیر هدف. مجله بوم شناسی آبزیان. 1404; 15 (2) :42-53

URL: http://jae.hormozgan.ac.ir/article-1-1148-fa.html


چکیده:   (84 مشاهده)
آبامکتین یکی از آفت‌کش‌های پرکاربرد در کشاورزی و آبزی‌پروری است که سمیت قابل ‌توجهی بر گونه‌های غیر هدف از جمله سخت ‌پوستان آبزی دارد. با توجه به تغییرات اقلیمی و گسترش مصرف این آفت کش، هدف مطالعه حاضر بررسی تأثیر عوامل محیطی بر سمیت آبامکتین بر گونه Artemia franciscana می باشد. ناپلیوس‌های آرتمیا به مدت 24 ساعت در معرض غلظت‌های مختلف آبامکتین (0 تا 2 µg/L) و تحت شرایط متفاوت شوری (25، 30 و 40 ppt) ، دما (25 و 30 درجه سانتی‌گراد)، pH (6.5، 8 و 9.5) و نور (چرخه نوری متناوب، تاریکی و روشنایی مداوم) قرار گرفتند. همچنین، اثر دوره بازیابی 24 ساعته پس از تماس اولیه و استرس شوری در دوره بازیابی نیز ارزیابی شد. درصد بقاء ناپلیوس‌ها به ‌عنوان شاخص سمیت در پایان آزمایش‌ها اندازه‌گیری گردید. نتایج نشان داد که افزایش غلظت آبامکتین موجب کاهش معنی‌دار درصد بقاء شد (p˂0.05)، که این کاهش تحت تأثیر عوامل محیطی مختلف متغیر بود. افزایش شوری به ویژه در سطح 40 ppt سمیت آبامکتین را تشدید کرد، به‌ طوری که در این شرایط در غلظت 2 µg/L، درصد بقاء از 70.3 در شوری 25 ppt  به 51.2 درصد کاهش یافت. همچنین، افزایش دما از ۲۵ به ۳۰ درجه سانتی‌گراد موجب کاهش معنی‌دار درصد بقاء از 63.2 به 52.4  درصد شد (p˂0.05) و بیانگر تشدید سمیت آبامکتین در دمای بالاتر است. سمیت در شرایط تاریکی و pH قلیایی (9.5) نیز افزایش یافت. علاوه بر این سمیت تأخیری پس از 24 ساعت دوره بازیابی در آب تمیز و کاهش بقاء تحت استرس شوری 60 ppt  مشاهده گردید. این نتایج نشان‌دهنده تأثیر قابل ‌توجه عوامل محیطی بر شدت سمیت آبامکتین است.
متن کامل [PDF 725 kb]   (37 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
انتشار: 1404/5/10

فهرست منابع
1. AbuQamar, S.F., El-Saadony, M.T., Alkafaas, S.S., Elsalahaty, M.I., Elkafas, S.S., Mathew, B.T., Aljasmi, A.N., et al., 2024. Ecological impacts and management strategies of pesticide pollution on aquatic life and human beings. Marine Pollution Bulletin, 206, p.16613. [DOI:10.1016/j.marpolbul.2024.116613]
2. Álvarez-Vergara, F., Sanchez-Hernandez, G.C. and Sabat, P., 2022. Biochemical and osmoregulatory responses of the African clawed frog experimentally exposed to salt and pesticide. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 258, p.109367. [DOI:10.1016/j.cbpc.2022.109367]
3. Bağdatli, S. and Yön Ertuğ, N.D., 2025. The effect of abamectin exposure on gametogenesis in zebrafish. Scientific Reports, 15(1), pp. 9038. https://doi.org/10.1038/s41598-025-93638-6 [DOI:10.1038/s41598-025-93638-6.]
4. Bai, S.H. and Ogbourne, S., 2016. Eco-toxicological effects of the avermectin family with a focus on abamectin and ivermectin. Chemosphere, 154, pp. 204-214. [DOI:10.1016/j.chemosphere.2016.03.113]
5. Bais, A.F., Bernhard, G., McKenzie, R.L., Aucamp, P.J., Young, P.J., Ilyas, M., Jöckel, P. and Deushi, M., 2019. Ozone-climate interactions and effects on solar ultraviolet radiation. Photochem Photobiol Sci, 18, pp. 602-640. [DOI:10.1039/c8pp90059k]
6. Bashir, I., Lone, F.A., Bhat, R.A., Mir, S.A., Dar, Z.A., and Dar, S.A., 2020. Concerns and threats of contamination on aquatic ecosystems. In K.R. Hakeem, R.A. Bhat, and H. Qadri (Eds.), Bioremediation and Biotechnology: Sustainable Approaches to Pollution Degradation. pp. 1-26. Springer Nature Switzerland AG. [DOI:10.1007/978-3-030-35691-0_1]
7. DeLorenzo, M.E., Wallace, S.C., Danese, L.E. and Baird, T.D., 2009. Temperature and salinity effects on the toxicity of common pesticides to the grass shrimp, Palaemonetes pugio. Journal of Environmental Science and Health, Part B, 44, pp.455-460. https://doi.org/ 10.1080/03601230902935121 [DOI:10.1080/03601230902935121]
8. Dokht Lish, R.A., Johari, S.A., Sarkheil, M. and Yu, I.J., 2019. On how environmental and experimental conditions affect the results of aquatic nanotoxicology on brine shrimp (Artemia salina): a case of silver nanoparticles toxicity. Environmental Pollution, 255, p. 113358. [DOI:10.1016/j.envpol.2019.113358]
9. El-Gendy, K.S., Radwan, M.A., Gad, A.F., Khamis, A.E. and Eshra, E.H., 2019. Use of multiple endpoints to investigate the ecotoxicological effects of abamectin and thiamethoxam on Theba pisana snails. Ecotoxicology and Environmental Safety, 167, pp.242-249. [DOI:10.1016/j.ecoenv.2018.10.027]
10. Escalada, J.P., Gianotti, J., Pajares, A., Massad, W.A., Amat-Guerri, F. and García, N.A., 2008. Photodegradation of the acaricide abamectin: A kinetic study. Journal of Agricultural and Food Chemistry, 56, pp.7355-7359. [DOI:10.1021/jf8014848]
11. Fan, L., Zhang, X. and Wang, H., 2023. Photo-induced toxicity of pesticides in aqueous environment: A review. Journal of Cleaner Production, 402, p.136726 [DOI:10.1016/j.jclepro.2023.136726]
12. Fathi, A. A., and Al-Fredan, M.A., 2007. Effect of the insecticide abamectin on the metabolic activity of Chlorella vulgaris Beyerinck. Egyptian Journal of Phycology, 8(1), pp. 1-12. [DOI:10.21608/egyjs.2007.114539]
13. Guan, T., Wang, L., Hu, M., Zhu, Q., Cai, L., et al., 2024. Effects of chronic abamectin stress on growth performance, digestive capacity, and defense systems in red swamp crayfish (Procambarus clarkii). Aquatic Toxicology, 268, p. 106861. [DOI:10.1016/j.aquatox.2024.106861]
14. Hall, L.W. and Anderson, R.D., 1995. The influence of salinity on the toxicity of various classes of chemicals to aquatic biota. Critical Reviews in Toxicology, 25(4), pp.281-346. https://doi.org/10.3109/10408449509021613 [DOI:10.3109/10408449509021613.]
15. Hedlund, J., Longo, S.B. and York, R., 2020. Agriculture, pesticide use, and economic development: a global examination (1990-2014). Rural Sociology, 85(1), pp.519-544. [DOI:10.1111/ruso.12303]
16. Howe, G.E., Marking, L., Bills, T. and Boogaard, M., 1994. Effects of water temperature and pH on toxicity of terbufos, trichlorfon, 4-nitrophenol, and 2, 4-dinitrophenol to the amphipod Gammarus pseudolimnaeus and rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry, 13, pp.51-66. [DOI:10.1002/etc.5620130109]
17. Hutton, S.J., Romain, S.S., Pedersen, E.I., Siddiqui, S., Chappell, P.E., White, J.W., Armbrust, K.L. and Brander, S.M., 2021. Salinity alters toxicity of commonly used pesticides in a model euryhaline fish species (Menidia beryllina). Toxics, 9(5), p.114. [DOI:10.3390/toxics9050114]
18. Kari, Z.A., 2025. Abiotic and biotic factors affecting the immune system of aquatic species: A review. Comparative Immunology Reports, 9, 200230. [DOI:10.1016/j.cirep.2025.200230]
19. Khouni, M., Hammecker, C., Grunberger, O. and Chaabane, H., 2023. Effect of salinity on the fate of pesticides in irrigated systems: A first overview. Environmental Science and Pollution Research, 30, pp.90471-90488. [DOI:10.1007/s11356-023-28860-8]
20. Kim, L. Kim, H., Kim, T.H. and An, Y.J., 2025. Size- and shape-dependent effects of polyethylene terephthalate microplastics on the benthic crustacean Artemia franciscana. Marine Pollution Bulletin, 211, p.117391. [DOI:10.1016/j.marpolbul.2024.117391]
21. Lavens, P. and Sorgeloos, P., 1996. Manual on the production and use of live food for aquaculture. FAO Fisheries Technical Paper, No. 361. Rome: Food and Agriculture Organization of the United Nations (FAO).
22. Meng, X., Guo, Y., Wang, Y., Fan, S., Wang, K. and Han, W., 2022. A systematic review of photolysis and hydrolysis degradation modes, degradation mechanisms, and identification methods of pesticides. Journal of Chemistry, 2022, 9552466. pp.1-16. [DOI:10.1155/2022/9552466]
23. Nie, X., Huang, C., Wei, J., Wang, Y., Hong, K., et al., 2024. Effects of photoperiod on survival, growth, physiological, and biochemical indices of red claw crayfish (Cherax quadricarinatus) juveniles. Animals, 14, p. 411. [DOI:10.3390/ani14030411]
24. Novelli, A., Vieira, B.H., Cordeiro, D., Cappelini, L.T.D., Vieira, E.M. and Espíndola, E.L.G., 2012. Lethal effects of abamectin on the aquatic organisms Daphnia similis, Chironomus xanthus and Danio rerio. Chemosphere, 86(1), pp. 36-40. [DOI:10.1016/j.chemosphere.2011.08.047]
25. Osterauer, R. and Köhler, H., 2008. Temperature-dependent effects of the pesticides thiacloprid and diazinon on the embryonic development of zebrafish (Danio rerio). Aquatic Toxicology, 86(4), pp. 485-494. [DOI:10.1016/j.aquatox.2007.12.013]
26. Parlapiano, I., Biandolino, F., Grattagliano, A., Ruscito, A., Libralato, G. and Prato, E., 2021. Effects of commercial formulations of glyphosate on marine crustaceans and implications for risk assessment under temperature changes. Ecotoxicology and Environmental Safety, 213, p.112068. [DOI:10.1016/j.ecoenv.2021.112068]
27. Reiber, L., Knillmann, S., Kaske, O., Atencio, L.C., et al., 2021. Long-term effects of a catastrophic insecticide spill on stream invertebrates. Science of the Total Environment, 768, p.144456. [DOI:10.1016/j.scitotenv.2020.144456]
28. Sanches, A.L.M., Pinto, T.J.S., Daam, M.A., Teresa, F.B., Vieira, B.H., Reghini, M.V., Almeida, E.A. and Espíndola, E.L.G., 2024. Isolated and mixed effects of pure and formulated abamectin and difenoconazole on biochemical biomarkers of the gills of Danio rerio. Aquatic Toxicology, 273, p.106978. [DOI:10.1016/j.aquatox.2024.106978]
29. Santos, K.P.E.D., Silva, I.F., Mano-Sousa, B.J., Duarte-Almeida, J.M., De Castro. W.V., et al., 2023. Abamectin promotes behavior changes and liver injury in zebrafish. Chemosphere, 311, p. 136941. [DOI:10.1016/j.chemosphere.2022.136941]
30. Saranjampour, P., Vebrosky, E.N. and Armbrust, K.L., 2017. Salinity impacts on water solubility and n-octanol/water partition coefficients of selected pesticides and oil constituents. Environmental Toxicology and Chemistry, 36(9), pp.2274-2280. [DOI:10.1002/etc.3784]
31. Seeland, A., Albrand, J., Oehlmann, J. and Müller, R., 2013. Life stage-specific effects of the fungicide pyrimethanil and temperature on the snail Physella acuta (Draparnaud, 1805) disclose the pitfalls for the aquatic risk assessment under global climate change. Environmental Pollution, 174, pp.1-9. [DOI:10.1016/j.envpol.2012.10.020]
32. Shrestha, A., Liu, H., He, K., Tahir, R., Yan, H., Guo, L., Hu, G., Liu, Q., Yang, S., and Zhao, L., 2025. Reproductive toxicity and neurotoxicity induced by abamectin and its therapeutic amelioration by curcumin in largemouth bass (Micropterus salmoides). Aquaculture, 608, p.742644. [DOI:10.1016/j.aquaculture.2025.742644]
33. Soares, M.P., Machado, A.L., Hayd, L., Soares, A. and Domingues, I., 2020. Effects of pH and nitrites on the toxicity of a cypermethrin-based pesticide to zebrafish embryos. Environmental Toxicology and Pharmacology, 76, p.103351. [DOI:10.1016/j.etap.2020.103351]
34. Sorgeloos, P., Dhert, P. and Candreva, P., 2001. Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture, 200(1-2), pp.147-159. [DOI:10.1016/S0044-8486(01)00698-6]
35. Tianyu, G., QianQian, Z., Jingyuan, Z., Long, W., Guoliang, C., Peng, X., Jianbin, F., Hui, W. and Jiale, L., 2024. Effect of abamectin on osmoregulation in red swamp crayfish (Procambarus clarkii). Environmental Science and Pollution Research, 31, pp.44717-44729. [DOI:10.1007/s11356-024-34056-5]
36. Toochaei, S.P., 2023. Effect of salinity and pH changes on the toxicity of abamectin in Artemia franciscana using response surface methodology. Current Applied Sciences, 1(1), pp.65-78. [DOI:10.22034/cas.2022.144986]
37. Tsui, T.K. and Chu, L.M., 2003. Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere, 52(7), pp.1189-1197. https://doi.org/10.1016/S0045-6535(03)00306-0 [DOI:10.1016/S0045-6535 (03)00306-0]
38. Van Stappen, G., Merchie, G., Dhont, J., Lavens, P., Baert, P. et al. (1996) 'Artemia', In: Lavens, P. and Sorgeloos, P. (eds.) Manual on the production and use of live food for aquaculture. Ghent, Belgium: Aquaculture and Artemia Reference Center, University of Ghent; Rome, Italy: Food and Agriculture Organization of the United Nations (FAO) Fisheries Technical Paper No. 361.
39. Wu X, Ma, Y., Li, X., He, N., Zhang, T., Liu, F., Feng, H. and Dong, J., 2023. Molecular mechanism of kidney damage caused by abamectin in carp: Oxidative stress, inflammation, mitochondrial damage, and apoptosis. Toxicology, 494, p.153599. [DOI:10.1016/j.tox.2023.153599]
40. Zhang, H., Chen, Y., Wang, J., Wang, Y., Wang, L and Duan, Z., 2022. Effects of temperature on the toxicity of waterborne nanoparticles under global warming: facts and mechanisms. Marine Environmental Research, 181, p.105757. [DOI:10.1016/j.marenvres.2022.105757]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به بوم‌شناسی آبزیان می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 All Rights Reserved | Journal of Aquatic Ecology

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)