Volume 15, Issue 1 (Spring 2025)                   J. Aqua. Eco 2025, 15(1): 42-56 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amini Vishekae M, Khoshkholgh M, Falahatkar B, Pazhand Z. Cultivation of Chironomid larvae (DIPTERA) using different levels of prebiotics and its effect on growth performance of Siberian sturgeon (Acipenser baerii) fingerlings. J. Aqua. Eco 2025; 15 (1) :42-56
URL: http://jae.hormozgan.ac.ir/article-1-1134-en.html
Abstract:   (186 Views)
The use of prebiotics in aquaculture has been shown to enhance growth performance, improve immune function, and increase disease resistance by modulating the gut microbiota. This study aimed to investigate the effects of the prebiotic Prodi 450 (containing mannan oligosaccharides and beta-glucans) on the growth performance and total biomass of chironomid larvae, which were used as food for Siberian sturgeon (Acipenser baerii) fingerlings. The study was conducted in two phases: first, to assess the impact of different prebiotic levels on chironomid larvae, and second, to evaluate the subsequent effects on sturgeon growth. Four treatment groups were prepared, each with a different dosage of Prodi 450: control (0 mg), P250 (250 mg), P500 (500 mg), and P750 (750 mg) per kg of chicken manure. This manure was used as a substrate for rearing chironomid larvae, with three replicates per treatment. After 10 days of cultivation at 25.71 ± 0.79°C, the larvae were harvested. The larvae were then fed to Siberian sturgeon fingerlings (initial average weight of 1.14 ± 0.04 g) for 14 days to evaluate the effects on their growth performance and immune indicators. The results showed that the highest average larval weight was observed in the P250 treatment (8.50 ± 0.50 mg). The P500 treatment exhibited the second-best growth performance, which was not significantly different from P250 but significantly higher than the control and P750 treatments (p<0.05). There were no significant differences in total biomass per unit area among the treatments (p>0.05). For the Siberian sturgeon, there were no significant differences in growth indices (p>0.05), although the P500 treatment exhibited slightly higher growth in most indices. In conclusion, while the prebiotic supplementation did not significantly increase the total biomass of chironomid larvae per unit area, it did produce heavier larvae, particularly at the P250 and P500 levels. However, the prebiotic supplementation did not significantly affect the growth performance of Siberian sturgeon fingerlings over the 14-day feeding period.
Full-Text [PDF 565 kb]   (66 Downloads)    
Type of Study: Research | Subject: Special
Published: 2025/05/15

References
1. Adel, M., Nayak, S., Lazado, C.C., and Yeganeh, S., 2016. Effects of dietary prebiotic GroBiotic®-A on growth performance, plasma thyroid hormones and mucosal immunity of great sturgeon, Huso huso (Linnaeus, 1758). Journal of Applied Ichthyology, 32(5), pp. 825-831. [DOI:10.1111/jai.13153]
2. Akrami, R., Chitsaz, H., and Lakzaei, F., 2018. Effect of dietary A-Max supplementation as a prebiotic on growth performance and hemato-immunological parameters of great sturgeon (Huso huso Linnaeus, 1758) juveniles. Iranian Journal of Fisheries Sciences, 17(2), pp. 251-266. https://jifro.ir/article-1-3348-fa.html
3. Alston, D.E., and Dendy, J.S., 1974. Progress report on outdoor culture and harvest of midge (Chironomidae: Diptera) larvae for fish food. Journal of World Aquaculture, 5, pp. 403-409. [DOI:10.1111/j.1749-7345.1974.tb00207.x]
4. Amlashi, F.S., Zamini, A., and Zarrabi, S., 2014. Assessing indices of growth of Oscar fry (Astronotus ocellatus) fed up with nauplius of Artemia enriched with MOS extracted from yeast cell wall (Saccharomyces cervisiae). Biological Forum an International Journal, 6(2), pp. 24-29. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e0fb9c3d663359718884611876df109c2efe1e4e
5. Aslanparviz, H., and Vahdat, S., 2014. Biological Basis and Culture of Aquatic and land Living Food Animals. Aquatic Scientific Publications, Tehran. 623 p. (in Persian)
6. Azimirad, M., Meshkini, S., Ahmadifard, N., and Hoseinifar, S.H., 2016. The effects of feeding with synbiotic (Pediococcus acidilactici and fructooligosaccharide) enriched adult Artemia on skin mucus immune responses, stress resistance, intestinal microbiota and performance of angelfish (Pterophyllum scalare). Fish and Shellfish Immunology, 54, pp. 516-522. [DOI:10.1016/j.fsi.2016.05.001]
7. Bassleer, G., 2006. The New Illustrated Guide to Fish Disease (in ornamental tropical and pond fish). 2nd edition. Gerald Bassleer Publication, 211 p. https://agris.fao.org/search/en/providers/122621/records/647396913ed73003714cd01e
8. Bogut, I., Has-Schon, E., Adamek, Z., Rajković V., and Rajković, V., 2007. Chironumus plumosus larvae - A suitable nutrient for freshwater farmed fish. Poljoprivreda, 13(1), pp. 159-162.
9. Bronzi, P., Rosenthal, H., Arlati, G., and Williot, P., 1999. A brief overview on the status and prospects of sturgeon farming in Western and Central Europe. Journal of Applied Ichthyology, 15(4-5), pp. 224-227. [DOI:10.1111/j.1439-0426.1999.tb00239.x]
10. Brovini, E.M., Lobo, H., Mendonça, R.F., Botta, C.M.R., Lima, A.L.R.L., de Deus, B.C.T., and Cardoso, S.J., 2023. Chironomus sancticaroli (Diptera: Chironomidae) in ecotoxicology: laboratory cultures and tests. Ecotoxicology, 32 (2), pp. 223-233. [DOI:10.1007/s10646-023-02631-0]
11. Chebanov, M., and Galich, A., 2013. Sturgeon Hatchery Manual. FAO Fisheries and Aquacuture Technical Peper 558, Food and Aquacuture Organization of the United Nations. Ankara 325 p.
12. Clark, G.M., 2020. Evaluating the Effect of Prebiotics and Probiotics on Rotifer and Juvenile Red Drum (Sciaenops ocellatus) Production. Master of Science Thesis. Texas AandM University. 52 p.
13. Daniels, C.L., Merrifield, D.L., Boothroyd, D.P., Davies, S.J., Factor, J.R., and Arnold, K.E., 2010. Effect of dietary Bacillus sp. and mannan oligosaccharides (MOS) on European lobster (Homarus gammarus L.) larvae growth performance, gut morphology and gut microbiota. Aquaculture, 304(1-4), pp. 49-57. [DOI:10.1016/j.aquaculture.2010.03.018]
14. Efatpanah, I., Falahatkar, B., Sajjadi, M., and Monsef Shokri, M., 2021. Initial feeding of Persian sturgeon (Acipenser persicus) with various live foods on growth parameters, survival, carcass analysis and fatty acids profile in adaptation to artificial feed using chironomid. Fisheries, 74(1), pp. 119-137. (in Persian) [DOI:10.22059/jfisheries.2021.315468.1215]
15. Falahatkar, B., 2018a. Nutritional requirements of the Siberian sturgeon: an updated synthesis. In: The Siberian sturgeon (Acipenser baerii, Brandt, 1869) Vol. 1 Biology, P. Williot, G. Nonnotte, D. Vizziano-Cantonnet, M. Chebanov (eds). Springer International Publishing, Cham, 207-228. [DOI:10.1007/978-3-319-61664-3_11]
16. Falahatkar, B., 2018b. Feeding and Feed Formulation in Aquatic Organisms. Jihad Agriculture. Tehran. 334 p. (in Persian)
17. Falahatkar, B., Mortezaei, F., Abedini, V., and Rahmati, M., 2023. Effects of using Chironomid larvae and Artemia biomass on growth performance and body composition of juvenile Eurasian perch (Perca fluviatilis) during adaptation to formulated diet. Aquaculture Sciences, 11(20), pp. 163-173. (in Persian) https://dor.isc.ac/dor/20.1001.1.23225351.1402.11.1.16.7
18. Fonseca, A., and Rocha, O., 2004. Laboratory cultures of the native species Chironomus xanthus Rempel, 1939 (Diptera, Chironomidae). Acta Limnologica Brasiliensia, 16(2), pp. 153-161. https://actalb.org/article/627b1134782aad05cd1891c9/pdf/alb-16-2-153.pdf
19. Geraylou, Z., Souffreau, C., Rurangwa, E., D'Hondt, S., Callewaert, L., Courtin, C. M., Delcour, J.A., Buyse, J., and Ollevier, F., 2012. Effects of arabinoxylan-oligosaccharides (AXOS) on juvenile Siberian sturgeon (Acipenser baerii) performance, immune responses and gastrointestinal microbial community. Fish and Shellfish Immunology, 33(3), pp. 718-724. [DOI:10.1016/j.fsi.2013.06.014]
20. Habib, M.A.B., Yusoff, F.M., Phang, S.M., Ang, K.J., and Mohamed, S., 1997. Nutritional values of Chironomid larvae grown in palm oil mill effluent and algal culture. Aquaculture, 158(1-2), pp. 95-105. [DOI:10.1016/S0044-8486(97)00176-2]
21. Hamidoghli, A., Falahatkar, B., Khoshkholgh, M., and Sahragard, A., 2014. Production and enrichment of chironomid larva with different levels of vitamin C and effects on performance of persian Sturgeon larvae. North American Journal of Aquaculture, 76(3), pp. 289-295. [DOI:10.1080/15222055.2014.911224]
22. Hoseinifar, S.H., Roosta, Z., Hajimoradloo, A., and Vakili, F., 2015. The effects of Lactobacillus acidophilus as feed supplement on skin mucosal immune parameters, intestinal microbiota, stress resistance and growth performance of black swordtail (Xiphophorus helleri). Fish and Shellfish Immunology, 42(2), pp. 533-538. [DOI:10.1016/j.fsi.2014.12.003]
23. Imanpour Namin, J., 2018. Identification Guide to Runnig Water Macroinvertebrates. University of Guilan Press. 414 p. (in Persian)
24. Kara, T., Tellioglu, A., and Aydin, S., 2012. Fatty acid composition of chironomidae larvae in different seasons. Asian Journal of Chemistry 24(11), pp. 5309-5312. https://asianpubs.org/index.php/ajchem/article/view/9842
25. Kibenge, F.S.B., Baldisserotto, B., and Chong, R.S.M., 2020. Aquaculture Pharmacology. Elsevier, Amsterdam, 412 p.
26. Kiyashko, S.I., Imbs, A.B., Naritab, T., Svetashev, V.I., and Wada, E., 2004. Fatty acid composition of aquatic insect larvae Stictochironomus pictulus (Diptera: Chironomidae): evidence of feeding upon methanotrophic bacteria. Comparative Biochemistry and Physiology, 139(4), pp. 705-711. [DOI:10.1016/j.cbpc.2004.08.013]
27. Konstantinov, A.S., 1952. Semi-commercial breeding of chironomidae larvae. Journal of Fishery Industries, 6.
28. Laviad, S., and Halpern, M., 2016. Chironomids' Relationship with Aeromonas Species. Frontiers in Microbiology, 7, pp. 1-7. [DOI:10.3389/fmicb.2016.00736]
29. Li, P., and Gatlin, D.M., 2004. Dietary brewer's yeast and the prebiotic Grobiotic®-Ainfluence growth performance, immune responses and resistance of hybrid striped bass (Morone chrysops × M. saxatilis) to Streptococcus iniae infection. Aquaculture. 231(1-4), pp. 445-456. [DOI:10.1016/j.aquaculture.2003.08.021]
30. Maier, K.J., Kosalwat, P., and Knight, A.W., 1990. Culture of Chironomus decorus (Diptera: Chironomidae) and the effect of temperature on its life history. Environmental Entomology, 19(6), pp. 1681-1688. [DOI:10.1093/ee/19.6.1681]
31. McLarney, W.O., Henderson, S., and Sherman, M.M., 1974. A new method for culturing Chironomus tentans fabricius larvae using burlap substrate in fertilized pools. Aquaculture, 4, pp. 67-76. [DOI:10.1016/0044-8486(74)90039-8]
32. Momeni-Moghaddam, P., Keyvanshokooh, S., Ziaei-Nejad, S., Salati, P.A., and Pasha-Zanoosi, H., 2015. Effects of mannan oligosaccharide supplementation on growth, some immune responses and gut lactic acid bacteria of common carp (Cyprinus carpio) fingerlings. Veterinary Research Forum: An International Quarterly Journal, 6(3), pp. 239-244. https://pmc.ncbi.nlm.nih.gov/articles/PMC4611979/
33. Nahavandi, R., Nekouei Fard, A., and Karimifar, B., 2022. A New and Practical Approach to the Live Food Ornamental Fish. Nourbakhsh Press, Tehran. 146 p. (in Persian)
34. Najdegerami, E.H., Baruah, K., Shiri, A., Rekecki, A., Van den Broeck, W., Sorgeloos, P., Boon, N., Bossier, P., and De Schryver, P., 2015. Siberian sturgeon (Acipenser baerii) larvae fed Artemia nauplii enriched with poly-β-hydroxybutyrate (PHB): effect on growth performance, body composition, digestive enzymes, gut microbial community, gut histology and stress tests. Aquaculture Research, 46(4), pp. 801-812. [DOI:10.1111/are.12231]
35. Pan, Y.J., Dahms, H.U., Hwang, J.S., and Souissi, S., 2022. Recent Trends in Live Feeds for Marine Larviculture: A Mini Review. Frontiers in Marine Science, 9, p. 864165. [DOI:10.3389/fmars.2022.864165]
36. Podder, R., Nath, S., and Modak, B.K., 2020. An Approach to Measure the Biomass of Bloodworms (Diptera: Chironomidae) in Different Nutrients. Proceedings of the Zoological Society, 73(1), pp. 95-98. [DOI:10.1007/s12595-019-00301-w]
37. Pourali Foshtomi H., Alimoradi, M., Padjand, Z., Yeganeh Rasteh Kenari, H., and Soheil Naghshi, S., 2016. Breeding and mass production of chironomid (Chironomus albidus) larvae under rearing conditions . Journal of Aquaculture Development, 10(3), pp. 69-81. (in Persian) https://aqudev.liau.ac.ir/article-1-405-fa.pdf
38. Rajabipour, F., Mashaii, N., Saresangi, H., and Bitaraf, A., 2011. Chironomus aprilinus Meigen production in underground brackish waters in Iran. Academic Journal of Entomology, 4 (2), pp. 41-46. https://www.idosi.org/aje/4(2)11/2.pdf
39. Ramezani, S., Eshaghzadeh, H., Saeimee, H., and Darvishi, S., 2018. Subyearling Siberian sturgeon Acipenser baerii fed a diet supplemented with immunogen: effects on growth performance, body composition, and hematological and serum biochemical parameters. Journal of Aquatic Animal Health, 30(2), pp. 155-163. [DOI:10.1002/aah.10019]
40. Reda, R.M., and Selim, K.M., 2013. Enhancement of growth, immunity and disease resistant to Yersinia ruckeri in Oreochromis niloticus fingerlings by oral administration of prebiotic (Immunowall®). Abbassa International Journal Aquaculture, 6(2), pp. 426-449.
41. Ringø, E., Olsen, R.E., Gifstad, T.Ø., Dalmo, R.A., Amlund, H., Hemre, G.I., and Bakke, A.M., 2010. Prebiotics in aquaculture: a review. Aquaculture Nutrition, 16(2), pp. 117-136. [DOI:10.1111/j.1365-2095.2009.00731.x]
42. Sahragard, A., and Rafatifard M., 2006. Mass rearing of the larvae of Chironomus riparius (Dip.: Chironomidae), Journal of Entomological Society of Iran, 26(1), pp. 45-55. (in Persian) https://jesi.areeo.ac.ir/article_105380.html
43. Samrongpan, C., Areechon, N., Yoonpundh, R., and Srisapoome, P., 2008. Effects of mannan-oligosaccharide on growth, survival and disease resistance of Nile tilapia (Oreochromis niloticus linnaeus) fry. in 8th International Symposium on Tilapia in Aquaculture.
44. Sheikhzadeh, N., and Soltani, M., 2022. Immunostimulants in Aquaculture. University of Tehran Press, Tehran. 185 p. (in Persian)
45. Statistical Yearbook of the Iranian Fisheries Organization 2019-2023., 2024. Iranian Fisheries Organization, Tehran. 64 p. (in Persian)
46. Sulistiyarto, B., and Bakrie, R., 2023. The growth of bloodworm, Chironomidae larvae (Diptera) fed with fish waste and chicken manure. Acta Entomology and Zoology, 4(2), pp. 1-5. [DOI:10.33545/27080013.2023.v4.i2a.106]
47. Taati, R., Abolghasemi, S.J., Tatina, M., and Tajan, M.N., 2012. Influence of prebiotic Immunowall on growth performance, body composition and immunophysiological variables in juvenile great sturgeon, Huso huso. Annals of Biological Research, 3(9), pp. 4435-4441.
48. Widanarni, W., Mailana, D.D., and Carman, O., 2007. Effect of different medium on survival rate and growth of Chironomus sp. larvae. Journal Akuakultur Indonesia, 5(2), pp. 113-118. [DOI:10.19027/jai.5.113-118]
49. Williot, P., Nonnotte, G., and Chebanov, M. 2018. The Siberian sturgeon (Acipenser baerii, Brandt, 1869). (Vol. 1), Springer Nature Publishing House, Berlin, 590 p. [DOI:10.1007/978-3-319-61664-3]
50. Yousefi, S., Hoseinifar, S.H., Paknejad, H., and Hajimoradloo, A., 2018. The effects of dietary supplement of galactooligosaccharide on innate immunity, immune related genes expression and growth performance in zebrafish (Danio rerio). Fish and Shellfish Immunology, 73, pp. 192-196. [DOI:10.1016/j.fsi.2017.12.022]
51. Yousefi, S., Monsef Shokri, M., Allaf Navirian, H., and Hoseinifar, S.H., 2020. Effects of yeast cell membrane prebiotic (immunowall®) on growth performance and hematological parameters in juvenile Persian sturgeon (Acipenser persicus). Journal of Animal Environment, 12, pp. 221-228. (in Persian) http://dx.doi.org/10.22034/aej.2020.115584
52. Yousefi, S., Khoshkholgh, M., Pajand, Z., Monsef Shokri, M., and Allaf Noverian, H., 2025. Effects of different co-feeding strategies on growth, body chemical composition, digestive enzymes, and expression of gh and igf-1 genes in Beluga sturgeon (Huso huso) larvae. Aquaculture Reports, 42, pp. 102812. [DOI:10.1016/j.aqrep.2025.102812]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 All Rights Reserved | Journal of Aquatic Ecology

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)