Volume 15, Issue 2 (summer 2025)                   J. Aqua. Eco 2025, 15(2): 54-67 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Avakh Keysami M, Avakh Keysami M, Zoughi Shalmani A, Rahanandeh M. The effect of mercuric chloride (HgCl2) on growth indices, survival rate, some blood indices and immunity of common carp fry. J. Aqua. Eco 2025; 15 (2) :54-67
URL: http://jae.hormozgan.ac.ir/article-1-1150-en.html
Abstract:   (79 Views)
Monitoring mercuric chloride in aquatic environments is crucial for ensuring water quality and supporting the healthy, sustainable production of fish. This study evaluated the effects of mercuric chloride on growth, nutritional performance, survival, and selected blood and immune indices of common carp (Cyprinus carpio) fry in 2022. A total of 900 fry (initial weight 1.23 ± 0.15 g; 100 fry per tank) obtained from a private hatchery in Rasht were distributed across 12 polyethylene tanks (350 L each) and exposed to four treatments: 0% (control), 5%, 25%, and 50% of the 96-hour LC50 (0.89 mg/L) of mercuric chloride, with three replicates per treatment, over an 8-week period. All groups received identical diets. Results showed that the highest weight (17.28 ± 3.22 g) and body length (7.48 ± 1.08 cm) were observed in the control group, significantly exceeding those of the 5%, 25%, and 50% treatments (p < 0.05). Growth indices, including specific growth rate and survival rate, decreased significantly in all mercuric chloride-exposed groups compared to controls (p < 0.05). Hematological analysis revealed significant reductions in red blood cell counts, hemoglobin concentration, hematocrit, and hematological indices in the exposed groups, with more pronounced effects at higher concentrations. Immune parameters, including immunoglobulin and lysozyme activity, were also significantly suppressed in all mercuric chloride treatments compared to controls (p < 0.05). These findings indicate that exposure of common carp fry to mercuric chloride, even at sublethal concentrations, adversely affects growth, survival, hematological status, and immune function. High concentrations near the LC50 markedly exacerbate these effects, underscoring the toxicological risks of mercury contamination in aquaculture environments.
Full-Text [PDF 972 kb]   (30 Downloads)    
Type of Study: Research | Subject: Special
Published: 2025/08/1

References
1. Abdel-Warith, A.W.A., Younis, E.S.M., Al-Asgah, N.A., Abd-Elkader, M.O. and Elsayed, E.A., 2020. Effects of sub-lethal lead nitrate and copper sulfate concentrations on hematological parameters during long-term exposure in Nile tilapia (Oreochromis niloticus). Journal of Scientific & Industrial Research. 79 (5), pp. 437-441.
2. Abedi, Z., Khalesi, M., Kohestan Eskandari, S. and Rahmani, H., 2012. Comparison of lethal concentrations (LC50-96 h) of CdCl2, CrCl3, and Pb (NO3) 2 in common carp (Cyprinus carpio) and Sutchi Catfish (Pangasius hypophthalmus). Iranian Journal of Toxicology, 6(18), pp.672-680. (In Persian).
3. Adewumi, B., Ogunwole, G.A., Akingunsola, E., Falope, O.C. and Eniade, A., 2018. Effects of sub-lethal toxicity of chlorpyrifos and DDforce pesticides on haematological parameters of Clarias gariepinus. International Research Journal of Public and Environmental Health, 5(5), pp. 62-71. http://dx.doi.org/10.15739/irjpeh.18.010 [DOI:10.15739/irjpeh.18.010]
4. Akter, M.S., Ahmed, M.K., Akhand, M.A. and Islam, M.M., 2008. Acute toxicity of arsenic and mercury to fresh water climbing perch, Anabas testudineus (Bloch). World journal of Zoology, 3(1), pp.13-18.
5. AOAC., 2005. Official Methods of Analysis (18th ed.). Maryland, USA: Association of Official Analytical Chemists International.
6. Atamanalp, M., Aksakal, E., Kocaman, E.M., Ucar, A., Sisman, T. and Turkez, H., 2011. The alterations in the hematological parameters of rainbow trout, Oncorhynchus mykiss, exposed to cobalt chloride. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 17(1). 17: S73-S76. http://dx.doi.org/10.9775/kvfd.2010.3393 [DOI:10.9775/kvfd.2010.3393]
7. Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M.R. and Sadeghi, M., 2021. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Frontiers in pharmacology, 12, p.643972. https://dx.doi.org/10.3389/fphar.2021.643972 [DOI:10.3389/fphar.2021.643972]
8. Barakat, R.O., El Gamal, S.A. and Elgamal, A.E.H.E., 2024. Toxic Effects of Mercuric Chloride (HgCl2) on the Common Carp (Cyprinus carpio) Larvae and Recovery Using Selenium and Vitamins. Egyptian Journal of Aquatic Biology and Fisheries, 28(3), pp.1043-1062. https://dx.doi.org/10.21608/ejabf.2024.361144 [DOI:10.21608/ejabf.2024.361144]
9. Bazoogh Hassan Sarai, D., Tizkar, B., Avakh, M. and Ahmadi, H., 2020, Effect of stocking density on growth and survival indices of common carp fry (Cyprinus carpio Linnaeus, 1758) in fiberglass ponds, Journal of Animal Environment, 12(4), pp.285-292. https://dx.doi.org/10.21608/ejabf.2024.361144 10.22034/AEJ.2020.131170 (In Persian). [DOI:10.21608/ejabf.2024.361144]
10. Briffa, J., Sinagra, E. and Blundell, R., 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9). e04691. https://dx.doi.org/10.1016/j.heliyon.2020.e04691 [DOI:10.1016/j.heliyon.2020.e04691]
11. Celik E. S., Kaya H., Yılmaz S., Akbulut M. and Tulgar A. 2013. Effects of zinc exposure on the accumulation, haematology and immunology of Mozambique tilapia, Oreochromis mossambicus. African Journal of Biotechnology, 12(7): 744-753. https://dx.doi.org/10.5897/AJB12.1408
12. Chen, C.Z., Chai, Y., Wang, Y.J., Li, P., Liu, L. and Li, Z.H., 2023. Physiological and molecular responses in the silver carp (Hypophthalmichthys molitrix) larvae after acute mercury exposure. Environmental Science and Pollution Research, 30(17), pp.49760-49770. https://dx.doi.org/10.1007/s11356-023-25842-8 [DOI:10.1007/s11356-023-25842-8]
13. de Oliveira Novaes, E., de Oliveira, A.T., Araruna, L.T., de Souza, J.S., de Pinho, J.V., de Almeida Rodrigues, P., Vieira, I.R.S. and Conte-Junior, C.A., 2024. Mercury Levels in the Worldwide Farmed Fish: A Systematic Review. Biological Trace Element Research, pp.1-15. https://dx.doi.org/10.1007/s12011-024-04493-x [DOI:10.1007/s12011-024-04493-x]
14. Dethloff, G.M., Schlenk, D., Khan, S. and Bailey, H.C., 1999. The effects of copper on blood and biochemical parameters of rainbow trout (Oncorhynchus mykiss). Archives of Environmental Contamination and Toxicology, 36, pp.415-423. https://dx.doi.org/10.1007/pl00006614 [DOI:10.1007/PL00006614]
15. Dhanapakiam, P. and Ramasamy, V.K., 2001. Toxic effects of copper and zinc mixtures on some haematological and biochemical parameters in common carp, Cyprinus carpio (Linn). Journal of Environmental Biology, 22(2), pp.105-111. https://dx.doi.org/10.3923/jfas.2015.337.346 [DOI:10.3923/jfas.2015.337.346]
16. El-Greisy, Z.A. and El-Gamal, A.H.A., 2015. Experimental studies on the effect of cadmium chloride, zinc acetate, their mixture and the mitigation with vitamin C supplementation on hatchability, size and quality of newly hatched larvae of common carp, Cyprinus carpio. Egyptian Journal of Aquatic Research, 41(2), pp.219-226. [DOI:10.1016/j.ejar.2015.03.007]
17. Farombi, E.O., Adelowo, O.A. and Ajimoko, Y.R., 2007. Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African cat fish (Clarias gariepinus) from Nigeria Ogun River. International journal of environmental research and public health, 4(2), pp.158-165. https://dx.doi.org/10.3390/ijerph2007040011 [DOI:10.3390/ijerph2007040011]
18. Fazio, F., 2019. Fish hematology analysis as an important tool of aquaculture: a review. Aquaculture, 500, pp.237-242. https://dx.doi.org/10.1016/J.AQUACULTURE.2018.10.030 [DOI:10.1016/j.aquaculture.2018.10.030]
19. Feldman B.F., Zinkl J.G. and Jain N.C., 2000. Schalm's Veterinary Hematology, ‎ Blackwell Pub, 5th edition, ISBN-13: 978-0683306927.1344 p.
20. Folmar, L.C., 1993. Effects of chemical contaminants on blood chemistry of teleost fish: a bibliography and synopsis of selected effects. Environmental Toxicology and Chemistry: An International Journal, 12(2), pp.337-375. [DOI:10.1002/etc.5620120216]
21. Guedenon, P., Edorh, A.P., Hounkpatin, A.S.Y., Alimba, C.G., Ogunkanmi, L.A., Nwokejiegbe, E.G. and Boko, M., 2012. Acute toxicity of mercury (HgCl2) to African Catfish, Clarias gariepinus. . Res. J. Chem. Sci. 2(3), 41-45.
22. Haux, C. and Larsson, Å., 1984. Long-term sublethal physiological effects on rainbow trout, Salmo gairdneri, during exposure to cadmium and after subsequent recovery. Aquatic toxicology, 5(2), pp.129-142. https://dx.doi.org/10.1016/0166-445X(84)90004-3 [DOI:10.1016/0166-445X(84)90004-3]
23. Hedayati, A. and Safahieh, A., 2012. RETRACTED: Serum hormone and biochemical activity as biomarkers of mercury toxicity in the yellowfin seabream Acanthopagrus latus. Toxicology and Industrial health, 28(4), pp.306-319. https://dx.doi.org/10.4172/2161-0495.1000156(in Persian). [DOI:10.1177/0748233711410916]
24. Hedayati, A., Jahanbakhshi, A., Shaluei, F. and Kolbadinezhad, S.M., 2013. Acute toxicity test of mercuric chloride (Hgcl2), lead chloride (Pbcl2) and zinc sulphate (Znso4) in common carp (Cyprinus carpio). Journal of Clinical Toxicology, 3, pp.156-163. https://dx.doi.org/10.4172/2161-0495.1000156 (in Persian). [DOI:10.4172/2161-0495.1000156]
25. Hedayati, A., Jahanbakhshi, A., Shaluei, F. and Kolbadinezhad, S.M., 2013. Acute toxicity test of mercuric chloride (Hgcl2), lead chloride (Pbcl2) and zinc sulphate (Znso4) in common carp (Cyprinus carpio). https://dx.doi.org/10.4172/2161-0495.1000156 [DOI:10.4172/2161-0495.1000156]
26. Hlavová, V., 1993. Reference values of the haematological indices in grayling (Thymallus thymallus Linnaeus). Comparative Biochemistry and Physiology Part A: Physiology, 105(3), pp.525-532. [DOI:10.1016/0300-9629(93)90429-8]
27. Hong, Y.J., Liao, W., Yan, Z.F., Bai, Y.C., Feng, C.L., Xu, Z.X. and Xu, D.Y., 2020. Progress in the research of the toxicity effect mechanisms of heavy metals on freshwater organisms and their water quality criteria in China. Journal of chemistry, 2020(1), p.9010348. 1-12. https://dx.doi.org/10.1155/2020/9010348 [DOI:10.1155/2020/9010348]
28. Hsu, P.C. and Guo, Y.L., 2002. Antioxidant nutrients and lead toxicity. Toxicology, 180(1), pp.33-44. https://dx.doi.org/10.1016/s0300-483x(02)00380-3 [DOI:10.1016/S0300-483X(02)00380-3]
29. Islam, S.M., Rohani, M.F., Zabed, S.A., Islam, M.T., Jannat, R., Akter, Y. and Shahjahan, M., 2020. Acute effects of chromium on hemato-biochemical parameters and morphology of erythrocytes in striped catfish Pangasianodon hypophthalmus. Toxicology Reports, 7, pp.664-670 https://dx.doi.org/10.1016/j.toxrep.2020.04.016 [DOI:10.1016/j.toxrep.2020.04.016]
30. Iwama, G. and Nakanishi T., 1996. The fish immune system. Academic Press, London. Chapter 3: innate Immunity in fish, 73-114.
31. Javed, M., Ahmad, I., Ahmad, A., Usmani, N. and Ahmad, M., 2016. Studies on the alterations in haematological indices, micronuclei induction and pathological marker enzyme activities in Channa punctatus (spotted snakehead) perciformes, channidae exposed to thermal power plant effluent. SpringerPlus, 5, pp.1-9. https://dx.doi.org/10.1186/s40064-016-2478-9 [DOI:10.1186/s40064-016-2478-9]
32. Jezierska, B., Ługowska, K. and Witeska, M., 2009. The effects of heavy metals on embryonic development of fish (a review). Fish physiology and biochemistry, 35(4), pp.625-640. https://dx.doi.org/10.1007/s10695-008-9284-4 [DOI:10.1007/s10695-008-9284-4]
33. Kohlmann, K., Gross, R., Murakaeva, A. and Kersten, P., 2003. Genetic variability and structure of common carp (Cyprinus carpio) populations throughout the distribution range inferred from allozyme, microsatellite and mitochondrial DNA markers. Aquatic Living Resources, 16, pp.421-431. https://dx.doi.org/10.1016/S0990-7440(03)00082-2 [DOI:10.1016/S0990-7440(03)00082-2]
34. Lawrence, M.J., Raby, G.D., Teffer, A.K., Jeffries, K.M., Danylchuk, A.J., Eliason, E.J., Hasler, C.T., Clark, T.D. and Cooke, S.J., 2020. Best practices for non‐lethal blood sampling of fish via the caudal vasculature. Journal of Fish Biology, 97(1), pp.4-15. https://dx.doi.org/10.1111/jfb.14339 [DOI:10.1111/jfb.14339]
35. Li, P., Feng, X. and Qiu, G., 2010. Methylmercury exposure and health effects from rice and fish consumption: a review. International journal of environmental research and public health, 7(6), pp.2666-2691. https://dx.doi.org/10.3390/ijerph7062666 [DOI:10.3390/ijerph7062666]
36. Łuczyńska, J., Paszczyk, B. and Łuczyński, M.J., 2018. Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland, and risk assessment for consumer's health. Ecotoxicology and environmental safety, 153, pp.60-67. https://dx.doi.org/10.1016/j.ecoenv.2018.01.057 [DOI:10.1016/j.ecoenv.2018.01.057]
37. Maheswaran, R., Devapaul, A., Muralidharan, S., Velmurugan, B. and Ignacimuthu, S., 2008. Haematological studies of fresh water fish, Clarias batrachus (L.) exposed to mercuric chloride. International Journal of Integrative Biology, 2(1), pp.49-54. [DOI:10.1016/j.aquaculture.2021.737498]
38. Majharul Islam S. M., Rohani M. F., Zabed S. A., Islam M. T., Jannat R., Akter Y. and Shahjahan MD. 2020. Acute effects of chromium on hemato-biochemical parameters and morphology of erythrocytes in striped catfish, Pangasianodon hypophthalmus.Toxicology Reports 7: 664-670. https://dx.doi.org/10.1016/j.toxrep.2020.04.016 [DOI:10.1016/j.toxrep.2020.04.016]
39. Mazid, M.A., Zaher, M., Begum, N.N., Ali, M.Z., Nahar, F., 1997. Formulation of cost-effective feeds from locally available ingredients for carp polyculture system for increased production. Aquaculture 151, pp.71-78. https://dx.doi.org/10.1016/S0044-8486(96)01504-9 [DOI:10.1016/S0044-8486(96)01504-9]
40. Moffitt, C. M., Cajas‐Cano, L., 2014. Blue growth: the 2014 FAO state of world fisheries and aquaculture. Fisheries 39(11), pp. 552-553. [DOI:10.1080/03632415.2014.966265]
41. Naz, S., Hussain, R., Ullah, Q., Chatha, A.M.M., Shaheen, A. and Khan, R.U., 2021. Toxic effect of some heavy metals on hematology and histopathology of major carp (Catla catla). Environmental science and pollution research, 28, pp.6533-6539. https://dx.doi.org/10.1007/s11356-020-10980-0 [DOI:10.1007/s11356-020-10980-0]
42. Rahimikia, E., Vali, S., Akbary, P. and Jahanbakhshi, A., 2016. Determination of lethal concentration of mercuric chloride (HgCl2), chloride lead (PbCl2) and zinc chloride (ZnCl2) in silver carp (Hypophthalmichthys molitrix). Experimental animal Biology, 5(1), pp.23-29.(in Persian)
43. Rand, G.M. ed., 1995. Fundamentals of aquatic toxicology: effects, environmental fate and risk assessment. CRC press. Washington D. C. USA. 1125 p.
44. Sadeghi, A., and Imanpour, M. R. (2015). Acute toxicity of mercuric chloride (HgCl2), lead chloride (PbCl2) and zinc sulfate (ZnSO4) on silver dollar fish (Metynnis fasciatus).
45. Seibel, H., Baßmann, B. and Rebl, A., 2021. Blood will tell: what hematological analyses can reveal about fish welfare. Frontiers in Veterinary Science, 8, p.616955. https://dx.doi.org/10.3389/fvets.2021.616955 [DOI:10.3389/fvets.2021.616955]
46. Svobodova, Z., Vykusova, B., Machova, J., Müller, R. and Lloyd, R., 1994. Sublethal chronic effects of pollutants on freshwater fish. R. Muller ir R. Lloyd. Lugano, pp.39-52.
47. Tacon, A.G., 2020. Trends in global aquaculture and aquafeed production: 2000-2017. Reviews in Fisheries Science & Aquaculture, 28(1), pp.43-56. https://dx.doi.org/10.1080/23308249.2019.1649634 [DOI:10.1080/23308249.2019.1649634]
48. Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K. and Sutton, D.J., 2012. Environmental toxicology. Molecular, clinical and environmental toxicology, Experientia Supplementum, 3, pp.133-164. https://dx.doi.org/10.1007/978-3-7643-8340-4_6 [DOI:10.1007/978-3-7643-8340-4_6]
49. Teunen, L., De Jonge, M., Malarvannan, G., Covaci, A., Belpaire, C., Focant, J.F., Blust, R. and Bervoets, L., 2021. Effect of abiotic factors and environmental concentrations on the bioaccumulation of persistent organic and inorganic compounds to freshwater fish and mussels. Science of the total environment, 799, p.149448. https://dx.doi.org/10.1016/j.scitotenv.2021.149448 [DOI:10.1016/j.scitotenv.2021.149448]
50. Thrall M.A., Baker D.C., Campbell T.W., DeNicola D.B., Fettman M.J., Lassen E.D., Rebar A. and Weiser G. 2004.Veterinary Hematology and Clinical Chemistry. Willey, 2004, ISBN: 0781768500, 9780781768504, 618 p.
51. Vander Oost, R., Beyer, J. and Vermeulen, N.P., 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental toxicology and pharmacology, 13(2), pp.57-149. https://dx.doi.org/10.1016/s1382-6689(02)00126-6 [DOI:10.1016/S1382-6689(02)00126-6]
52. Verep, B., Beşli, E.S., Altinok, I. and Mutlu, C., 2007. Assessment of mercuric chloride toxicity on rainbow trouts (Oncorhynchus mykiss) and chubs (Alburnoides bipunctatus). Pakistan Journal of Biological Sciences: PJBS, 10(7), pp.1098-1102. [DOI:10.3923/pjbs.2007.1098.1102]
53. Vieira, L.R., Gravato, C., Soares, A.M.V.M., Morgado, F. and Guilhermino, L., 2009. Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: linking biomarkers to behaviour. Chemosphere, 76(10), pp.1416-1427. [DOI:10.1016/j.chemosphere.2009.06.005]
54. Vosylienė, M.Z., 1999. The effect of heavy metals on haematological indices of fish (survey). Acta Zoologica Lituanica, 9(2), pp.76-82. [DOI:10.1080/13921657.1999.10512290]
55. Witeska, M. and Lugowska, K., 2004. The effect of copper exposure during embryonic development on deformations of newly hatched common carp larvae, and further consequences. Electronic Journal of Polish Agricultural Universities. Series Fisheries, 7(2)
56. Witeska, M., 2005. Stress in fish-hematological and immunological effects of heavy metals. Electronic journal of ichthyology, 1(1), pp.35-41.
57. Witeska, M., Kondera, E., Ługowska, K. and Bojarski, B., 2022. Hematological methods in fish-Not only for beginners. Aquaculture, 547, p.737498. http://dx.doi.org/10.1016/j.aquaculture.2021.737498 [DOI:10.1016/j.aquaculture.2021.737498]
58. Yuan, D., Huang, L., Zeng, L., Liu, S., He, Z., Zhao, M., Feng, J. and Qin, C., 2017. Acute toxicity of mercury chloride (HgCl2) and cadmium chloride (CdCl2) on the behavior of freshwater fish, Percocypris pingi. International Journal of Aquaculture and Fishery Sciences, 3(3), pp.066-070. https://dx.doi.org/10.17352/2455-8400.000031 [DOI:10.17352/2455-8400.000031]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 All Rights Reserved | Journal of Aquatic Ecology

Designed & Developed by : Yektaweb

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)